
ibm.com/redbooks

Front cover

IBM Power Systems
Performance Guide
Implementing and Optimizing

Dino Quintero
Sebastien Chabrolles

Chi Hui Chen
Murali Dhandapani

Talor Holloway
Chandrakant Jadhav

Sae Kee Kim
Sijo Kurian

Bharath Raj
Ronan Resende

Bjorn Roden
Niranjan Srinivasan

Richard Wale
William Zanatta

Zhi Zhang

Leverages IBM Power virtualization

Helps maximize system resources

Provides sample scenarios

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM Power Systems Performance Guide: Implementing
and Optimizing

February 2013

SG24-8080-00

© Copyright International Business Machines Corporation 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (February 2013)

This edition applies to IBM POWER 750 FW AL730-095, VIO 2.2.2.0 & 2.2.1.4, SDDPCM 2.6.3.2
HMC v7.6.0.0, nmem version 2.0, netperf 1.0.0.0, AIX 7.1 TL2, SDDPCM 2.6.3.2, ndisk version 5.9, IBM
SAN24B-4 (v6.4.2b), IBM Storwize V7000 2076-124 (6.3.0.1)

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team who wrote this book . ix
Now you can become a published author, too! . xi
Comments welcome. xii
Stay connected to IBM Redbooks . xii

Chapter 1. IBM Power Systems and performance tuning . 1
1.1 Introduction . 2
1.2 IBM Power Systems . 2
1.3 Overview of this publication . 4
1.4 Regarding performance . 4

Chapter 2. Hardware implementation and LPAR planning . 7
2.1 Hardware migration considerations. 8
2.2 Performance consequences for processor and memory placement 9

2.2.1 Power Systems and NUMA effect. 10
2.2.2 PowerVM logical partitioning and NUMA . 12
2.2.3 Verifying processor memory placement . 14
2.2.4 Optimizing the LPAR resource placement . 18
2.2.5 Conclusion of processor and memory placement . 26

2.3 Performance consequences for I/O mapping and adapter placement 26
2.3.1 POWER 740 8205-E6B logical data flow . 27
2.3.2 POWER 740 8205-E6C logical data flow . 28
2.3.3 Differences between the 8205-E6B and 8205-E6C . 30
2.3.4 POWER 770 9117-MMC logical data flow . 30
2.3.5 POWER 770 9117-MMD logical data flow . 31
2.3.6 Expansion units. 32
2.3.7 Conclusions . 33

2.4 Continuous availability with CHARM. 33
2.4.1 Hot add or upgrade . 34
2.4.2 Hot repair . 35
2.4.3 Prepare for Hot Repair or Upgrade utility . 35
2.4.4 System hardware configurations. 36

2.5 Power management . 37

Chapter 3. IBM Power Systems virtualization . 41
3.1 Optimal logical partition (LPAR) sizing . 42
3.2 Active Memory Expansion. 48

3.2.1 POWER7+ compression accelerator . 51
3.2.2 Sizing with the active memory expansion planning tool . 52
3.2.3 Suitable workloads . 56
3.2.4 Deployment . 57
3.2.5 Tunables . 60
3.2.6 Monitoring . 61
3.2.7 Oracle batch scenario . 63
3.2.8 Oracle OLTP scenario . 64
© Copyright IBM Corp. 2013. All rights reserved. iii

3.2.9 Using amepat to suggest the correct LPAR size. 66
3.2.10 Expectations of AME. 69

3.3 Active Memory Sharing (AMS) . 69
3.4 Active Memory Deduplication (AMD) . 70
3.5 Virtual I/O Server (VIOS) sizing . 70

3.5.1 VIOS processor assignment . 70
3.5.2 VIOS memory assignment . 72
3.5.3 Number of VIOS . 72
3.5.4 VIOS updates and drivers . 73

3.6 Using Virtual SCSI, Shared Storage Pools and N-Port Virtualization 74
3.6.1 Virtual SCSI . 75
3.6.2 Shared storage pools . 76
3.6.3 N_Port Virtualization . 79
3.6.4 Conclusion . 82

3.7 Optimal Shared Ethernet Adapter configuration . 82
3.7.1 SEA failover scenario . 83
3.7.2 SEA load sharing scenario . 84
3.7.3 NIB with an SEA scenario . 85
3.7.4 NIB with SEA, VLANs and multiple V-switches. 86
3.7.5 Etherchannel configuration for NIB . 87
3.7.6 VIO IP address assignment . 88
3.7.7 Adapter choices . 89
3.7.8 SEA conclusion. 89
3.7.9 Measuring latency. 90
3.7.10 Tuning the hypervisor LAN . 92
3.7.11 Dealing with dropped packets on the hypervisor network. 96
3.7.12 Tunables . 99

3.8 PowerVM virtualization stack configuration with 10 Gbit. 100
3.9 AIX Workload Partition implications, performance and suggestions. 103

3.9.1 Consolidation scenario . 104
3.9.2 WPAR storage . 108

3.10 LPAR suspend and resume best practices . 117

Chapter 4. Optimization of an IBM AIX operating system . 119
4.1 Processor folding, Active System Optimizer, and simultaneous multithreading 120

4.1.1 Active System Optimizer . 120
4.1.2 Simultaneous multithreading (SMT) . 120
4.1.3 Processor folding . 123
4.1.4 Scaled throughput . 124

4.2 Memory . 125
4.2.1 AIX vmo settings . 126
4.2.2 Paging space . 128
4.2.3 One TB segment aliasing . 129
4.2.4 Multiple page size support . 138

4.3 I/O device tuning . 140
4.3.1 I/O chain overview . 140
4.3.2 Disk device tuning. 143
4.3.3 Pbuf on AIX disk devices . 148
4.3.4 Multipathing drivers . 150
4.3.5 Adapter tuning. 150

4.4 AIX LVM and file systems . 157
4.4.1 Data layout . 157
4.4.2 LVM best practice . 159
iv IBM Power Systems Performance Guide: Implementing and Optimizing

4.4.3 File system best practice. 163
4.4.4 The filemon utility . 176
4.4.5 Scenario with SAP and DB2 . 178

4.5 Network . 186
4.5.1 Network tuning on 10 G-E. 186
4.5.2 Interrupt coalescing. 189
4.5.3 10-G adapter throughput scenario . 191
4.5.4 Link aggregation . 193
4.5.5 Network latency scenario . 196
4.5.6 DNS and IPv4 settings . 198
4.5.7 Performance impact due to DNS lookups. 199
4.5.8 TCP retransmissions. 200
4.5.9 tcp_fastlo. 205
4.5.10 MTU size, jumbo frames, and performance . 205

Chapter 5. Testing the environment . 207
5.1 Understand your environment . 208

5.1.1 Operating system consistency . 208
5.1.2 Operating system tunable consistency . 209
5.1.3 Size that matters . 210
5.1.4 Application requirements . 210
5.1.5 Different workloads require different analysis . 211
5.1.6 Tests are valuable. 211

5.2 Testing the environment . 211
5.2.1 Planning the tests . 211
5.2.2 The testing cycle . 212
5.2.3 Start and end of tests . 213

5.3 Testing components . 213
5.3.1 Testing the processor . 214
5.3.2 Testing the memory . 215
5.3.3 Testing disk storage . 221
5.3.4 Testing the network. 223

5.4 Understanding processor utilization . 226
5.4.1 Processor utilization . 226
5.4.2 POWER7 processor utilization reporting. 227
5.4.3 Small workload example . 230
5.4.4 Heavy workload example . 233
5.4.5 Processor utilization reporting in power saving modes. 234
5.4.6 A common pitfall of shared LPAR processor utilization 236

5.5 Memory utilization . 237
5.5.1 How much memory is free (dedicated memory partitions) 237
5.5.2 Active memory sharing partition monitoring . 242
5.5.3 Active memory expansion partition monitoring . 244
5.5.4 Paging space utilization . 247
5.5.5 Memory size simulation with rmss . 249
5.5.6 Memory leaks . 250

5.6 Disk storage bottleneck identification . 251
5.6.1 Performance metrics . 251
5.6.2 Additional workload and performance implications. 252
5.6.3 Operating system - AIX. 253
5.6.4 Virtual I/O Server . 255
5.6.5 SAN switch . 256
5.6.6 External storage . 258
 Contents v

5.7 Network utilization . 259
5.7.1 Network statistics . 260
5.7.2 Network buffers . 263
5.7.3 Virtual I/O Server networking monitoring . 264
5.7.4 AIX client network monitoring . 268

5.8 Performance analysis at the CEC . 268
5.9 VIOS performance advisor tool and the part command . 271

5.9.1 Running the VIOS performance advisor in monitoring mode 271
5.9.2 Running the VIOS performance advisor in post processing mode 271
5.9.3 Viewing the report . 273

5.10 Workload management . 275

Chapter 6. Application optimization . 279
6.1 Optimizing applications with AIX features . 280

6.1.1 Improving application memory affinity with AIX RSETs 280
6.1.2 IBM AIX Dynamic System Optimizer. 288

6.2 Application side tuning . 292
6.2.1 C/C++ applications . 292
6.2.2 Java applications . 305
6.2.3 Java Performance Advisor . 305

6.3 IBM Java Support Assistant . 308
6.3.1 IBM Monitoring and Diagnostic Tools for Java - Memory Analyzer 308
6.3.2 Other useful performance advisors and analyzers . 311

Appendix A. Performance monitoring tools and what they are telling us 315
NMON . 316
lpar2rrd. 316
Trace tools and PerfPMR. 316

AIX system trace basics . 317
Using the truss command . 325
Real case studies using tracing facilities. 327
PerfPMR . 334
The hpmstat and hpmcount utilities . 334

Appendix B. New commands and new commands flags . 337
amepat . 338
lsconf . 339

Appendix C. Workloads . 341
IBM WebSphere Message Broker . 342
Oracle SwingBench . 342
Self-developed C/C++ application . 343

1TB segment aliasing demo program illustration . 343
“latency” test for RSET, ASO and DSO demo program illustration. 347

Related publications . 353
IBM Redbooks . 353
Online resources . 353
Help from IBM . 353
vi IBM Power Systems Performance Guide: Implementing and Optimizing

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2013. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Active Memory™
AIX®
alphaWorks®
DB2®
developerWorks®
DS6000™
DS8000®
Easy Tier®
EnergyScale™
eServer™
FDPR®
HACMP™
IBM Systems Director Active Energy

Manager™
IBM®

Informix®
Jazz™
Micro-Partitioning®
Power Systems™
POWER6+™
POWER6®
POWER7+™
POWER7®
PowerHA®
PowerPC®
PowerVM®
POWER®
pSeries®
PureFlex™
PureSystems™

Rational®
Redbooks®
Redbooks (logo) ®
RS/6000®
Storwize®
System p®
System Storage®
SystemMirror®
Tivoli®
WebSphere®
XIV®
z/VM®
zSeries®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii IBM Power Systems Performance Guide: Implementing and Optimizing

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication addresses performance tuning topics to help leverage the
virtualization strengths of the POWER® platform to solve clients’ system resource utilization
challenges, and maximize system throughput and capacity. We examine the performance
monitoring tools, utilities, documentation, and other resources available to help technical
teams provide optimized business solutions and support for applications running on IBM
POWER systems’ virtualized environments.

The book offers application performance examples deployed on IBM Power Systems™
utilizing performance monitoring tools to leverage the comprehensive set of POWER
virtualization features: Logical Partitions (LPARs), micro-partitioning, active memory sharing,
workload partitions, and more. We provide a well-defined and documented performance
tuning model in a POWER system virtualized environment to help you plan a foundation for
scaling, capacity, and optimization.

This book targets technical professionals (technical consultants, technical support staff, IT
Architects, and IT Specialists) responsible for providing solutions and support on IBM
POWER systems, including performance tuning.

The team who wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Dino Quintero is an IBM Senior Certified IT Specialist with the ITSO in Poughkeepsie, NY.
His areas of knowledge include enterprise continuous availability, enterprise systems
management, system virtualization, and technical computing and clustering solutions. He is
currently an Open Group Distinguished IT Specialist. Dino holds a Master of Computing
Information Systems degree and a Bachelor of Science degree in Computer Science from
Marist College.

Sebastien Chabrolles is an IT Specialist at the Product and Solution Support Center in
Montpellier, France. His main activity is to perform pre-sales customer benchmarks on Power
Systems in the European Benchmark Center. He graduated from a Computer Engineering
school (ESIEA) and has 10 years of experience in AIX® and Power Systems. His areas of
expertise include IBM Power Systems, PowerVM®, AIX, and Linux.

Chi Hui Chen is a Senior IT Specialist at the IBM Advanced Technical Skills (ATS) team in
China. He has more than eight years of experience in IBM Power Systems. He provides AIX
support to GCG ISVs in the areas of application design, system performance tuning, problem
determination, and application benchmarks. He holds a degree in Computer Science from
University of Science and Technology of China.

Murali Dhandapani is a Certified IT Specialist in Systems Management in IBM India. He is
working for the IBM India Software Lab Operations team, where he is a technical lead for IBM
Rational® Jazz™ products infrastructure, high availability, and disaster recovery deployment.
His areas of expertise include Linux, AIX, IBM POWER virtualization, PowerHA®
SystemMirror®, System Management, and Rational tools. Murali has a Master of Computer
Science degree. He is an IBM developerWorks® Contributing Author, IBM Certified Specialist
© Copyright IBM Corp. 2013. All rights reserved. ix

in System p® administration and an IBM eServer™ Certified Systems Expert - pSeries® High
Availability Cluster Multi-Processing (IBM HACMP™).

Talor Holloway is a senior technical consultant working for Advent One, an IBM business
partner in Melbourne, Australia. He has worked extensively with AIX and Power Systems and
System p for over seven years. His areas of expertise include AIX, NIM, PowerHA, PowerVM,
IBM Storage, and IBM Tivoli® Storage Manager.

Chandrakant Jadhav is an IT Specialist working at IBM India. He is working for the IBM India
Software Lab Operations team. He has over five years of experience in System P, Power
Virtualization. His areas of expertise include AIX, Linux, NIM, PowerVM, IBM Storage, and
IBM Tivoli Storage Manager.

Sae Kee Kim is a Senior Engineer at Samsung SDS in Korea. He has 13 years of experience
in AIX Administration and five years of Quality Control in the ISO20000 field. He holds a
Bachelor's degree in Electronic Engineering from Dankook University in Korea. His areas of
expertise include IBM Power Systems and IBM AIX administration.

Sijo Kurian is a Project Manager in IBM Software Labs in India. He has seven years of
experience in AIX and Power Systems. He holds a Masters degree in Computer Science. He
is an IBM Certified Expert in AIX, HACMP and Virtualization technologies.His areas of
expertise include IBM Power Systems, AIX, PowerVM, and PowerHA.

Bharath Raj is a Performance Architect for Enterprise Solutions from Bangalore, India. He
works with the software group and has over five years of experience in the performance
engineering of IBM cross-brand products, mainly in WebSphere® Application Server
integration areas. He holds a Bachelor of Engineering degree from the University of RVCE,
Bangalore, India. His areas of expertise include performance benchmarking IBM products,
end-to-end performance engineering of enterprise solutions, performance architecting,
designing solutions, and sizing capacity for solutions with IBM product components. He wrote
many articles that pertain to performance engineering in developerWorks and in international
science journals.

Ronan Resende is a System Analyst at Banco do Brasil in Brazil. He has 10 years of
experience with Linux and three years of experience in IBM Power Systems. His areas of
expertise include IBM AIX, Linux in pSeries, and zSeries® (z/VM®).

Bjorn Roden is a Systems Architect for IBM STG Lab Services and is part of the IBM
PowerCare Teams working with High End Enterprise IBM Power Systems for clients. He has
co-authored seven other IBM Redbooks publications, been speaker at IBM Technical events.
Bjorn holds MSc, BSc and DiplSSc in Informatics from Lund University in Sweden, and BCSc
and DiplCSc in Computer Science from Malmo University in Sweden. He also has
certifications as IBM Certified Infrastructure Systems Architect (ISA), Certified TOGAF
Architect, Certified PRINCE2 Project Manager, and Certified IBM Advanced Technical Expert,
IBM Specialist and IBM Technical Leader since 1994. He has worked with designing,
planning, implementing, programming, and assessing high availability, resiliency, security,
and high performance systems and solutions for Power/AIX since AIX v3.1 1990.

Niranjan Srinivasan is a software engineer with the client enablement and systems
assurance team.

Richard Wale is a Senior IT Specialist working at the IBM Hursley Lab, UK. He holds a B.Sc.
(Hons) degree in Computer Science from Portsmouth University, England. He has over 12
years of experience supporting AIX. His areas of expertise include IBM Power Systems,
PowerVM, AIX, and IBM i.
x IBM Power Systems Performance Guide: Implementing and Optimizing

William Zanatta is an IT Specialist working in the Strategic Outsourcing Delivery at IBM
Brazil. He holds a B.S. degree in Computer Engineering from Universidade Metodista de Sao
Paulo, Brazil. He has over 10 years of experience in supporting different UNIX platforms, and
his areas of expertise include IBM Power Systems, PowerVM, PowerHA, AIX and Linux.

Zhi Zhang is an Advisory Software Engineer in IBM China. He has more than 10 years of
experience in the IT field. He is a certified DB2® DBA. His areas of expertise include IBM
AIX, DB2 and WebSphere Application Performance Tuning. He is currently working in the IBM
software group as performance QA.

Thanks to the following people for their contributions to this project:

Ella Buslovich, Richard Conway, Octavian Lascu, Ann Lund, Alfred Schwab, and Scott Vetter
International Technical Support Organization, Poughkeepsie Center

Gordon McPheeters, Barry Knapp, Bob Maher and Barry Spielberg
IBM Poughkeepsie

Mark McConaughy, David Sheffield, Khalid Filali-Adib, Rene R Martinez, Sungjin Yook, Vishal
C Aslot, Bruce Mealey, Jay Kruemcke, Nikhil Hedge, Camilla McWilliams, Calvin Sze, and Jim
Czenkusch
IBM Austin

Stuart Z Jacobs, Karl Huppler, Pete Heyrman, Ed Prosser
IBM Rochester

Linda Flanders
IBM Beaverton

Rob Convery, Tim Dunn and David Gorman
IBM Hursley

Nigel Griffiths and Gareth Coates
IBM UK

Yaoqing Gao
IBM Canada

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xii IBM Power Systems Performance Guide: Implementing and Optimizing

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. IBM Power Systems and
performance tuning

The following topics are discussed in this chapter:

� Introduction

� IBM Power Systems

� Overview of this publication

� Regarding performance

1

© Copyright IBM Corp. 2013. All rights reserved. 1

1.1 Introduction

To plan the journey ahead, you must understand the available options and where you stand
today. It also helps to know some of the history.

Power is performance redefined. Everyone knows what performance meant for IT in the past:
processing power and benchmarks. Enterprise Systems, entry systems and Expert
Integrated Systems built on the foundation of a POWER processor continue to excel and
extend industry leadership in these traditional benchmarks of performance.

Let us briefly reflect on where we are today and how we arrived here.

1.2 IBM Power Systems

Over the years, the IBM Power Systems family has grown, matured, been innovated and
pushed the boundaries of what clients expect and demand from the harmony of hardware and
software.

With the advent of the POWER4 processor in 2001, IBM introduced logical partitions (LPARs)
outside of their mainframe family to another audience. What was seen as radical then, has
grown into the expected today. The term virtualization is now common-place across most
platforms and operating systems. However, what options a given platform or hypervisor
provides greatly varies. Many hypervisors provide a number of options to achieve the same
end result. The availability of such options provides choices to fulfill the majority of client
requirements. For general workloads the difference between the various implementations
may not be obvious or apparent. However, for the more demanding workloads or when clients
are looking to achieve virtualization or utilization goals, the different approaches need to be
understood.

As an example, PowerVM can virtualize storage to an LPAR through a number of routes.
Each option delivers the required storage, but the choice is dictated by the expectations for
that storage. Previously the requirement was simply for storage, but today the requirement
could also include management, functionality, resilience, or quality of service.

We cannot stress enough the importance of understanding your requirements and your
workload requirements. These complimentary factors provide you, the consumer, with
enough knowledge to qualify what you require and expect from your environment. If you are
not familiar with the range of options and technologies, then that is where your IBM sales
advisor can help.

POWER processor-based servers can be found in three product families: IBM Power
Systems servers, IBM Blade servers and IBM PureSystems™. Each of these three families is
positioned for different types of client requirements and expectations.

In this book we concentrate on the Power Systems family. This is the current incarnation of
the previous System p, pSeries and RS/6000® families. It is the traditional Power platform for
which clients demand performance, availability, resilience, and security, combined with a
broad, differentiated catalogue of capabilities to suit requirements from the entry level to the
enterprise. As an example, Table 1-1 on page 3 summarizes the processor sizings available
across the range.
2 IBM Power Systems Performance Guide: Implementing and Optimizing

Table 1-1 Power Systems servers processor configurations

The smallest configuration for a Power 710 is currently a single 4-core processor with 4 GB of
RAM. There are configuration options and combinations from this model up to a Power 795
with 256 cores with 16 TB of RAM. While Table 1-1 may suggest similarities between certain
models, we illustrate later in 2.3, “Performance consequences for I/O mapping and adapter
placement” on page 26 some of the differences between models.

IBM Power Systems servers are not just processors and memory. The vitality of the platform
comes from its virtualization component, that is, PowerVM, which provides a secure, scalable
virtualization environment for AIX, IBM i and Linux applications. In addition to hardware
virtualization for processor, RAM, network, and storage, PowerVM also delivers a broad
range of features for availability, management, and administration.

For a complete overview of the PowerVM component, refer to IBM PowerVM Getting Started
Guide, REDP-4815.

Power Systems Max socket per
CEC

Max core per
socket

Max CEC per
system

Max core per
system

Power 710 1 8 1 8

Power 720 1 8 1 8

Power 730 2 8 1 16

Power 740 2 8 1 16

Power 750 4 8 1 32

Power 755 4 8 1 32

Power 770 4 4 4 64

Power 780 4 8 4 128

Power 795 4 8 8 256

Note: The enterprise-class models have a modular approach: allowing a single system to
be constructed from one or more enclosures or Central Electronic Complexes (CECs). This
building-block approach provides an upgrade path to increase capacity without replacing
the entire system.
Chapter 1. IBM Power Systems and performance tuning 3

1.3 Overview of this publication

The chapters in our book are purposely ordered. Chapters 2, 3 and 4 discuss the three
foundational layers on which every Power Systems server is implemented:

� Hardware
� Hypervisor
� Operating system

Configuration and implementation in one layer impacts and influences the subsequent layers.
It is important to understand the dependencies and relationships between layers to
appreciate the implications of decisions.

In these four initial chapters, the subtopics are grouped and ordered for consistency in the
following sequence:

1. Processor
2. Memory
3. Storage
4. Network

The first four chapters are followed by a fifth that describes how to investigate and analyze
given components when you think you may have a problem, or just want to verify that
everything is normal. Databases grow, quantities of users increase, networks become
saturated. Like cars, systems need regular checkups to ensure everything is running as
expected. So where applicable we highlight cases where it is good practice to regularly check
a given component.

1.4 Regarding performance

The word performance was previously used to simply describe and quantify. It is the fastest or
the best; the most advanced; in some cases the biggest and typically most expensive.

However, today’s IT landscape brings new viewpoints and perspectives to familiar concepts.
Over the years performance has acquired additional and in some cases opposing attributes.

Today quantifying performance relates to more than just throughput. To illustrate the point,
consider the decision-making process when buying a motor vehicle. Depending on your
requirements, one or more of the following may be important to you:

� Maximum speed
� Speed of acceleration
� Horsepower

These three fall into the traditional ideals of what performance is. Now consider the following
additional attributes:

� Fuel economy
� Number of seats

Note: The focus of this book is on topics concerning PowerVM and AIX. Some of the
hardware and hypervisor topics are equally applicable when hosting IBM i or Linux LPARs.
There are, however, specific implications and considerations relative to IBM i and Linux
LPARs. Unfortunately, doing suitable justice to these in addition to AIX is beyond the scope
of this book.
4 IBM Power Systems Performance Guide: Implementing and Optimizing

� Wheel clearance
� Storage space
� Safety features

All are elements that would help qualify how a given vehicle would perform, for a given
requirement.

For example, race car drivers would absolutely be interested in the first three attributes.
However, safety features would also be high on their requirements. Even then, depending on
the type of race, the wheel clearance could also be of key interest.

Whereas a family with two children is more likely to be more interested in safety, storage,
seats and fuel economy, whereas speed of acceleration would be less of a concern.

Turning the focus back to performance in the IT context and drawing a parallel to the car
analogy, traditionally one or more of the following may have been considered important:

� Processor speed
� Number of processors
� Size of memory

Whereas today’s perspective could include these additional considerations:

� Utilization
� Virtualization
� Total cost of ownership
� Efficiency
� Size

Do you need performance to be fastest or just fast enough? Consider, for example, any
health, military or industry-related applications. Planes need to land safety, heartbeats need
to be accurately monitored, and everyone needs electricity. In those cases, applications
cannot underperform.

If leveraging virtualization to achieve server consolidation is your goal, are you wanting
performance in efficiency? Perhaps you need your server to perform with regard to its power
and physical footprint? For some clients, resilience and availability may be more of a
performance metric than traditional data rates.

Throughout this book we stress the importance of understanding your requirements and your
workload.
Chapter 1. IBM Power Systems and performance tuning 5

6 IBM Power Systems Performance Guide: Implementing and Optimizing

Chapter 2. Hardware implementation and
LPAR planning

To get all the benefits from your POWER7® System, it is really important to know the
hardware architecture of your system and to understand how the POWER hypervisor assigns
hardware to the partitions.

In this chapter we present the following topics:

� Hardware migration considerations

� Performance consequences for processor and memory placement

� Performance consequences for I/O mapping and adapter placement

� Continuous availability with CHARM

� Power management

2

© Copyright IBM Corp. 2013. All rights reserved. 7

2.1 Hardware migration considerations

In section 2.2.2 of Virtualization and Clustering Best Practices Using IBM System p Servers,
SG24-7349, we discussed a range of points to consider when migrating workloads from
POWER4 to POWER5 hardware. While much has changed in the six years since that
publication was written, many of the themes remain relevant today.

In the interim years, the IBM POWER Systems product family has evolved through
POWER6® and onto POWER7 generations. The range of models has changed based on
innovation and client demands to equally cater from entry-level deployment to the large-scale
enterprise. PowerVM has continued to mature by adding new virtualization features and
refining the abilities of some of the familiar components.

So with the advent of POWER7+™, these key areas should be evaluated when considering
or planning an upgrade:

� Understanding your workload and its requirements and dependencies. This is crucial to
the decision-making process. Without significant understanding of these areas, an
informed decision is not possible. Assumptions based on knowledge of previous hardware
generations may not lead to the best decision.

� One size does not fit all. This is why IBM offers more than one model. Consider what you
need today, and compare that to what you might need tomorrow. Some of the models have
expansion paths, both with and without replacing the entire system. Are any of your
requirements dependant on POWER7+ or is POWER7 equally an option? If you are
looking to upgrade or replace servers from both POWER and x86 platforms, would an IBM
PureFlex™ System deployment be an option? Comparison of all the models with the IBM
POWER Systems catalogue is outside the scope of this publication. However, the various
sections in this chapter should provide you with a range of areas that need to be
considered in the decision-making process.

� Impact on your existing infrastructure. If you already have a Hardware Management
Console (HMC), is it suitable for managing POWER7 or POWER7+? Would you need to
upgrade or replace storage, network or POWER components to take full advantage of the
new hardware? Which upgrades would be required from day one and which could be
planned and staggered?

� Impact on your existing deployments. Are the operating systems running on your existing
servers supported on the new POWER7/POWER7+ hardware? Do you need to
accommodate and schedule upgrades? If upgrades are required, do you also need new
software licenses for newer versions of middleware?

� Optional PowerVM features. There are a small number of POWER7 features that are not
included as part of the standard PowerVM tiers. If you are moving up to POWER7 for the
first time, you may not appreciate that some features are enabled by separate feature
codes. For example, you might be interested in leveraging Versioned WPARs or Active
Memory™ Expansion (AME); both of these are provided by separate codes.

� If you are replacing existing hardware, are there connectivity options or adapters that you
need to preserve from your legacy hardware? For example, do you require adapters for
tape support? Not all options that were available on previous System p or POWER
Systems generations are available on the current POWER7 and POWER7+ family. Some
have been depreciated, replaced or superseded. For example, it is not possible to connect
an IBM Serial Storage Architecture (SSA) disk array to POWER7; however, new storage
options have been introduced since SSA such as SAN and SSD. If you are unsure
whether a given option is available for or supported on the current generation, contact your
IBM representative.
8 IBM Power Systems Performance Guide: Implementing and Optimizing

Aside from technological advancements, external factors have added pressure to the
decision-making process:

� Greener data centers. Increased electricity prices, combined with external expectations
result in companies proactively retiring older hardware in favour of newer, more efficient,
models.

� Higher utilization and virtualization. The challenging economic climate means that
companies have fewer funds to spend on IT resources. There is a trend for increased
efficiency, utilization and virtualization of physical assets. This adds significant pressure to
make sure assets procured meet expectations and are suitably utilized. Industry average
is approximately 40% virtualization and there are ongoing industry trends to push this
higher.

Taking these points into consideration, it is possible that for given configurations, while the
initial cost might be greater, the total cost of ownership (TCO) would actually be significantly
less over time.

For example, a POWER7 720 (8205-E4C) provides up to eight processor cores and has a
quoted maximum power consumption of 840 watts. While a POWER7 740 (8205-E6C)
provides up to 16 cores with a quoted maximum power consumption of 1400 watts; which is
fractionally less than the 1680 watts required for two POWER7 720 servers to provide the
same core quantity.

Looking higher up the range, a POWER7+ 780 (9117-MHD) can provide up to 32 cores per
enclosure. An enclosure has a quoted maximum power consumption of 1900 watts. Four
POWER 720 machines would require 3360 watts to provide 32 cores.

A POWER 780 can also be upgraded with up to three additional enclosures. So if your
requirements could quickly outgrow the available capacity of a given model, then considering
the next largest model might be beneficial and cheaper in the longer term.

In 2.1.12 of Virtualization and Clustering Best Practices Using IBM System p Servers,
SG24-7349, we summarized that the decision-making process was far more complex than
just a single metric. And that while the final decision might be heavily influenced by the most
prevalent factor, other viewpoints and considerations must be equally evaluated. While much
has changed in the interim, ironically the statement still stands true.

2.2 Performance consequences for processor and memory
placement

As described in Table 1-1 on page 3, the IBM Power Systems family are all multiprocessor
systems. Scalability in a multiprocessor system has always been a challenge and become
even more challenging in this multicore era. Add on top of that the hardware virtualization,
and you will have an amazing puzzle game to solve when you are facing performance issues.

In this section, we give the key to better understanding your Power Systems hardware. We do
not go into detail to all the available features, but we try to give you the main concepts and
best practices to take the best decision to size and create your Logical Partitions (LPARs).

Note: In the simple comparison above we are just comparing core quantity with power
rating. The obvious benefit of the 740 over the 720 (and the 780 over the 740) is maximum
size of LPAR. We also are not considering the difference in processor clock frequency
between the models or the benefits of POWER7+ over POWER7.
Chapter 2. Hardware implementation and LPAR planning 9

2.2.1 Power Systems and NUMA effect

Symmetric multiprocessing (SMP) architecture allows a system to scale beyond one
processor. Each processor is connected to the same bus (also known as crossbar switch) to
access the main memory. But this computation scaling is not infinite due to the fact that each
processor needs to share the same memory bus, so access to the main memory is serialized.
With this limitation, this kind of architecture can scale up to four to eight processors only
(depending on the hardware).

Figure 2-1 SMP architecture and multicore

The Non-Uniform Memory Access (NUMA) architecture is a way to partially solve the SMP
scalability issue by reducing pressure on the memory bus.

As opposed to the SMP system, NUMA adds the notion of a multiple memory subsystem
called NUMA node:

� Each node is composed of processors sharing the same bus to access memory (a node
can be seen as an SMP system).

� NUMA nodes are connected using a special “interlink bus” to provide processor data
coherency across the entire system.

Each processor can have access to the entire memory of a system; but access to this
memory is not uniform (Figure 2-2 on page 11):

� Access to memory located in the same node (local memory) is direct with a very low
latency.

� Access to memory located in another node is achieved through the interlink bus with a
higher latency.

By limiting the number of processors that directly access the entire memory, performance is
improved compared to an SMP because of the much shorter queue of requests on each
memory domain.

Note: More detail about a specific IBM Power System can be found here:

http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp

Note: A multicore processor chip can be seen as an SMP system in a chip. All the cores in
the same chip share the same memory controller (Figure 2-1).

SMP CrossBarSwitch

CPU

RAM

Core2Core1

Core4Core3 S
ha

re
d

 c
a

ch
e

Memory Controler
=SMP CrossBarSwitch

CPU

RAM

Core2Core1

Core4Core3 S
ha

re
d

 c
a

ch
e

Core2Core1

Core4Core3 S
ha

re
d

 c
a

ch
e

Memory Controler
=

10 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 2-2 NUMA architecture concept

The architecture design of the Power platform is mostly NUMA with three levels:

� Each POWER7 chip has its own memory dimms. Access to these dimms has a very low
latency and is named local.

� Up to four POWER7 chips can be connected to each other in the same CEC (or node) by
using X, Y, Z buses from POWER7. Access to memory owned by another POWER7 chip
in the same CEC is called near or remote. Near or remote memory access has a higher
latency compared than local memory access.

� Up to eight CECs can be connected through A, B buses from a POWER7 chip (only on
high-end systems). Access to memory owned by another POWER7 in another CEC (or
node) is called far or distant. Far or distant memory access has a higher latency than
remote memory access.

Figure 2-3 Power Systems with local, near, and far memory access

Summary: Power Systems can have up to three different latency memory accesses
(Figure 2-3). This memory access time depends on the memory location relative to a
processor.

SMP CrossBarSwitch SMP CrossBarSwitch

Process2

Interconnect
bus

Process1 :
Access to local Memory : Direct
Latency : Very Good !!!

Process2 :
Access to Remote Memory : Indirect
Latency : Less Good

Process1

Node1 Node2

local

far
near

CPU CPU

CPU CPU

CPU CPU

CPU CPU

I/O
Controler

I/O
Controler

M
em

o
ry

C
o

n
tr

o
ll

er

node0 node1

M
e

m
o

ry
C

o
n

tr
o

lle
r

M
em

o
ry

C
on

tr
o

lle
r

M
em

o
ry

C
on

tr
o

lle
r

M
em

o
ry

C
o

n
tr

o
lle

r
M

em
o

ry
C

o
n

tr
ol

le
r

M
e

m
o

ry
C

o
n

tr
o

lle
r

M
em

o
ry

C
o

n
tr

o
ll

er
Chapter 2. Hardware implementation and LPAR planning 11

Latency access time (from lowest to highest): local near or remote far or distant.

Many people focus on the latency effect and think NUMA is a problem, which is wrong.
Remember that NUMA is attempting to solve the scalability issue of the SMP architecture.
Having a system with 32 cores in two CECs performs better than 16 cores in one CEC; check
the system performance document at:

http://www.ibm.com/systems/power/hardware/reports/system_perf.html

2.2.2 PowerVM logical partitioning and NUMA

You know now that the hardware architecture of the IBM Power Systems is based on NUMA.
But compared to other systems, Power System servers offer the ability to create several
LPARs, thanks to PowerVM.

The PowerVM hypervisor is an abstraction layer that runs on top of the hardware. One of its
roles is to assign cores and memory to the defined logical partitions (LPARs). The POWER7
hypervisor was improved to maximize partition performance through processor and memory
affinity. It optimizes the assignment of processor and memory to partitions based on system
topology. This results in a balanced configuration when running multiple partitions on a
system. The first time an LPAR gets activated, the hypervisor allocates processors as close
as possible to where allocated memory is located in order to reduce remote and distant
memory access. This processor and memory placement is preserved across LPAR reboot
(even after a shutdown and reactivation of the LPAR profile) to keep consistent performance
and prevent fragmentation of the hypervisor memory.

For shared partitions, the hypervisor assigns a home node domain, the chip where the
partition’s memory is located. The entitlement capacity (EC) and the amount of memory
determine the number of home node domains for your LPAR. The hypervisor dispatches the
shared partition’s virtual processors (VP) to run on the home node domain whenever
possible. If dispatching on the home node domain is not possible due to physical processor
overcommitment of the system, the hypervisor dispatches the virtual processor temporarily
on another chip.

Let us take some example to illustrate the hypervisor resource placement for virtual
processors.

In a POWER 780 with four drawers and 64 cores (Example 2-1), we create one LPAR with
different EC/VP configurations and check the processor and memory placement.

Example 2-1 POWER 780 configuration

{D-PW2k2-lpar2:root}/home/2bench # prtconf
System Model: IBM,9179-MHB
Machine Serial Number: 10ADA0E
Processor Type: PowerPC_POWER7
Processor Implementation Mode: POWER 7
Processor Version: PV_7_Compat
Number Of Processors: 64
Processor Clock Speed: 3864 MHz
CPU Type: 64-bit
Kernel Type: 64-bit
LPAR Info: 4 D-PW2k2-lpar2
Memory Size: 16384 MB
Good Memory Size: 16384 MB
Platform Firmware level: AM730_095
Firmware Version: IBM,AM730_095
12 IBM Power Systems Performance Guide: Implementing and Optimizing

http://www.ibm.com/systems/power/hardware/reports/system_perf.html

Console Login: enable
Auto Restart: true
Full Core: false

� D-PW2k2-lpar2 is created with EC=6.4, VP=16, MEM=4 GB. Because of EC=6.4, the
hypervisor creates one HOME domain in one chip with all the VPs (Example 2-2).

Example 2-2 Number of HOME domains created for an LPAR EC=6.4, VP=16

D-PW2k2-lpar2:root}/ # lssrad -av
REF1 SRAD MEM CPU
0
 0 3692.12 0-63

� D-PW2k2-lpar2 is created with EC=10, VP=16, MEM=4 GB. Because of EC=10, which is
greater than the number of cores in one chip, the hypervisor creates two HOME domains
in two chips with VPs spread across them (Example 2-3).

Example 2-3 Number of HOME domain created for an LPAR EC=10, VP=16

{D-PW2k2-lpar2:root}/ # lssrad -av
REF1 SRAD MEM CPU
0
 0 2464.62 0-23 28-31 36-39 44-47 52-55 60-63
 1 1227.50 24-27 32-35 40-43 48-51 56-59

� Last test with EC=6.4, VP=64 and MEM=16 GB; just to verify that number of VP has no
influence on the resource placement made by the hypervisor.

EC=6.4 < 8 cores so it can be contained in one chip, even if the number of VPs is 64
(Example 2-4).

Example 2-4 Number of HOME domains created for an LPAR EC=6.4, VP=64

D-PW2k2-lpar2:root}/ # lssrad -av
REF1 SRAD MEM CPU
0
 0 15611.06 0-255

Of course, it is obvious that 256 SMT threads (64 cores) cannot really fit in one POWER7
8-core chip. lssrad only reports the VPs in front of their preferred memory domain (called
home domain).

On LPAR activation, the hypervisor allocates only one memory domain with 16 GB because
our EC can be store within a chip (6.4 EC < 8 cores), and there is enough free cores in a chip
and enough memory close to it. During the workload, if the need in physical cores goes
beyond the EC, the POWER hypervisor tries to dispatch VP on the same chip (home domain)
if possible. If not, VPs are dispatched on another POWER7 chip with free resources, and
memory access will not be local.

Conclusion
If you have a large number of LPARs on your system, we suggest that you create and start
your critical LPARs first, from the biggest to the smallest. This helps you to get a better affinity

Note: The lssrad command detail is explained in Example 2-6 on page 16.
Chapter 2. Hardware implementation and LPAR planning 13

configuration for these LPARs because it makes it more possible for the POWER hypervisor
to find resources for optimal placement.

Even if the hypervisor optimizes your LPAR processor and memory affinity on the very first
boot and tries to keep this configuration persistent across reboot, you must be aware that
some operations can change your affinity setup, such as:

� Reconfiguration of existing LPARs with new profiles

� Deleting and recreating LPARs

� Adding and removing resources to LPARs dynamically (dynamic LPAR operations)

In the next chapter we show how to determine your LPAR processor memory affinity, and how
to re-optimize it.

2.2.3 Verifying processor memory placement

You need now to find a way to verify whether the LPARs created have an “optimal” processor
and memory placement, which is achieved when, for a given LPAR definition (number of
processors and memory), the partition uses the minimum number of sockets and books to
reduce remote and distant memory access to the minimum. The information about your
system, such as the number of cores per chip, memory per chip and per book, are critical to
be able to make this estimation.

Here is an example for a system with 8-core POWER7 chips, 32 GB of memory per chip, two
books (or nodes), and two sockets per node.

� An LPAR with six cores, 24 GB of memory is optimal if it can be contained in one chip
(only local memory access).

� An LPAR with 16 cores, 32 GB of memory is optimal if it can be contained in two chips
within the same book (local and remote memory access). This is the best processor and
memory placement you can have with this number of cores. You must also verify that the
memory is well balanced across the two chips.

� An LPAR with 24 cores, 48 GB memory is optimal if it can be contained in two books with
a balanced memory across the chips. Even if you have some distant memory access, this
configuration is optimal because you do not have another solution to satisfy the 24
required cores.

� An LPAR with 12 cores, 72 GB of memory is optimal if it can be contained in two books
with a balanced memory across the chips. Even if you have some distant memory access,
this configuration is optimal because you do not have another solution to satisfy the 72 GB
of memory.

As explained in the shaded box on page 14, some operations such as dynamic LPAR can
“fragment” your LPAR configuration, which gives you some nonoptimal placement for some

Tip: If you have LPARs with a virtualized I/O card that depend on resources from a VIOS,
but you want them to boot before the VIOS to have a better affinity, you can:

1. Start LPARs the first time (most important LPARs first) in “open firmware” or “SMS”
mode to let the PowerVM hypervisor assign processor and memory.

2. When all your LPARs are up, you can boot the VIOS in normal mode.

3. When the VIOS are ready, you can reboot all the LPARs in normal mode. The order is
not important here because LPAR placement is already optimized by PowerVM in
step 1.
14 IBM Power Systems Performance Guide: Implementing and Optimizing

LPARs. As described in Figure 2-4, avoid having a system with “fragmentation” in the LPAR
processor and memory assignment.

Also, be aware that the more LPARs you have, the harder it is to have all your partitions
defined with an optimal placement. Sometimes you have to take a decision to choose which
LPARs are more critical, and give them a better placement by starting them (the first time)
before the others (as explained in 2.2.2, “PowerVM logical partitioning and NUMA” on
page 12).

Figure 2-4 Example of optimal versus fragmented LPAR placement

Verifying LPAR resource placement in AIX
In an AIX partition, the lparstat -i command shows how many processors and how much
memory are defined in your partition (Example 2-5).

Example 2-5 Determining LPAR resource with lparstat

{D-PW2k2-lpar1:root}/ # lparstat -i
Node Name : D-PW2k2-lpar1
Partition Name : D-PW2k2-lpar1
Partition Number : 3
Type : Dedicated-SMT-4
Mode : Capped
Entitled Capacity : 8.00
Partition Group-ID : 32771
Shared Pool ID : -
Online Virtual CPUs : 8
Maximum Virtual CPUs : 16
Minimum Virtual CPUs : 1
Online Memory : 32768 MB
Unallocated I/O Memory entitlement : -
Memory Group ID of LPAR : -
Desired Virtual CPUs : 8
Desired Memory : 32768 MB

LPAR1 6 cores
LPAR2 2 cores

LPAR3 3 cores

LPAR1 3 cores

LPAR3 1 cores

LPAR1 5 cores

LPAR2 2 cores

LPAR3 2 cores

LPAR1 2 cores

LPAR2 2 cores

LPAR1 8 cores

LPAR2 6 cores

LPAR3 6 cores

LPAR1 8 cores

LPARs fragmented : Not Optimized LPARs not fragmented : Optimal Placement

node0

node1

node0

node1
Chapter 2. Hardware implementation and LPAR planning 15

....

From Example 2-5 on page 15, we know that our LPAR has eight dedicated cores with SMT4
(8x4=32 logical cpu) and 32 GB of memory.

Our system is a 9179-MHB (POWER 780) with four nodes, two sockets per node, each socket
with eight cores and 64 GB of memory. So, the best resource placement for our LPAR would
be one POWER7 chip with eight cores and 32 GB of memory next to this chip.

To check your processor and memory placement, you can use the lssrad -av command from
your AIX instance, as shown in Example 2-6.

Example 2-6 Determining resource placement with lssrad

{D-PW2k2-lpar1:root}/ # lssrad -av
REF1 SRAD MEM CPU
0
 0 15662.56 0-15
1
 1 15857.19 16-31

� REF1 (first hardware-provided reference point) represents a drawer of our POWER 780.
For a POWER 795, this represents a book. Systems other than POWER 770, POWER
780, or POWER 795, do not have a multiple drawer configuration (Table 1-1 on page 3) so
they cannot have several REF1s.

� Scheduler Resource Allocation Domain (SRAD) represents a socket number. In front of
each socket, there is an amount of memory attached to our partition. We also find the
logical processor number attached to this socket.

From Example 2-6, we can conclude that our LPAR is composed of two sockets (SRAD 0 and
1) with four cores on each (0-15 = 16-31 = 16 lcpu SMT4 = 4 cores) and 16 GB of memory
attached to each socket. These two sockets are located in two different nodes (REF1 0 and
1).

Compared to our expectation (which was: only one socket with 32 GB of memory means only
local memory access), we have two different sockets in two different nodes (high potential of
distant memory access). The processor and memory resource placement for this LPAR is not
optimal and performance could be degraded.

LPAR processor and memory placement impact
To demonstrate the performance impact, we performed the following experiment: We created
an LPAR (eight dedicated cores, 32 GB of memory) on a POWER 780 (four drawers, eight
sockets). We generated an OnLine Transactional Processing (OLTP) load on an Oracle
database with 200 concurrent users and measured the number of transactions per second
(TPS). Refer to the “Oracle SwingBench” on page 342.

Test 1: The first test was done with a nonoptimal resource placement: eight dedicated cores
spread across two POWER7 chips, as shown in Example 2-6,

Test 2: The second test was done with an optimal resource placement: eight dedicated cores
on the same chip with all the memory attached as shown in Example 2-7 on page 17.

Note: The number given by REF1 or SRAD does not represent the real node number or
socket number on the hardware. All LPARs will report a REF1 0 and a SRAD 0. They just
represent a logical number inside the operating system instance.
16 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 2-7 Optimal resource placement for eight cores and 32 GB of memory

{D-PW2k2-lpar1:root}/ # lssrad -av
REF1 SRAD MEM CPU
0
 0 31519.75 0-31

Test results
During the two tests, the LPAR processor utilization was 100%. We waited 5 minutes during
the steady phase and took the average TPS as result of the experiment (Table 2-1 on
page 18). See Figure 2-5, and Figure 2-6.

Figure 2-5 Swinbench results for test1 (eight cores on two chips: nonoptimal resource placement)

Figure 2-6 Swingbench results for Test 2 (eight cores on one chip: optimal resource placement)

This experiment shows 24% improvement in TPS when most of the memory accesses are
local compared to a mix of 59% local and 41% distant. This is confirmed by a higher Cycle
per Instruction (CPI) in test 1 (CPI=7.5) compared to test 2 (CPI=4.8). This difference can be
explained by a higher memory latency for 41% of the access in test 1, which causes some
Chapter 2. Hardware implementation and LPAR planning 17

additional empty processor cycle when waiting for data from the distant memory to complete
the instruction.

Table 2-1 Result table of resource placement impact test on an Oracle OLTP workload

Notice that 59% local access is not so bad with this “half local/ half distant” configuration. This
is because the AIX scheduler is aware of the processor and memory placement in the LPAR,
and has enhancements to reduce the NUMA effect as shown in 6.1, “Optimizing applications
with AIX features” on page 280.

2.2.4 Optimizing the LPAR resource placement

As explained in the previous section, processor and memory placement can have a direct
impact on the performance of an application. Even if the PowerVM hypervisor optimizes the
resource placement of your partitions on the first boot, it is still not “clairvoyant.” It cannot
know by itself which partitions are more important than others, and cannot anticipate what will
be the next changes in our “production” (creation of new “critical production” LPARs, deletion
of old LPARs, dynamic LPAR, and so on). You can help the PowerVM hypervisor to cleanly
place the partitions by sizing your LPAR correctly and using the proper PowerVM option
during your LPAR creation.

Do not oversize your LPAR
Realistic sizing of your LPAR is really important to get a better processor memory affinity. Try
not to give to a partition more processor than needed.

If a partition has nine cores assigned, cores and memory are spread across two chips (best
scenario). If, during peak time, this partition consumes only seven cores, it would have been
more efficient to assign seven or even eight cores to this partition only to have the cores and
the memory within the same POWER7 chip.

For a virtualized processor, a good Entitlement Capacity (EC) is really important. Your EC
must fit with the average need of processor power of your LPAR during a regular load (for
example, the day only for a typical day’s OLTP workload, the night only for typical night “batch”
processing). This gives you a resource placement that better fits the needs of your partition.
As for dedicated processor, try not to oversize your EC across domain boundaries (cores per
chip, cores per node). A discussion regarding how to efficiently size your virtual processor
resources is available in 3.1, “Optimal logical partition (LPAR) sizing” on page 42.

Test name Resource
placement

Access to local
memorya

a. Results given by the AIX hpmstat command in “Using hpmstat to identify LSA issues” on
page 134.

CPI Average TPS Performance
ratio

Test 1 non Optimal
(local + distant)

59% 7.5 5100 1.00

Test 2 Optimal
(only local)

99.8% 4.8 6300 1.24

Note: These results are from experiments based on a load generation tool named
Swingbench; results may vary depending on the characteristics of your workload. The
purpose of this experiment is to give you an idea of the potential gain you can get if you
take care of your resource placement.
18 IBM Power Systems Performance Guide: Implementing and Optimizing

Memory follows the same rule. If you assign to a partition more memory than can be found
behind a socket or inside a node, you will have to deal with some remote and distant memory
access. This is not a problem if you really need this memory, but if you do not use it totally, this
situation could be avoided with a more realistic memory sizing.

Affinity groups
This option is available with PowerVM Firmware level 730. The primary objective is to give
hints to the hypervisor to place multiple LPARs within a single domain (chip, drawer, or book).
If multiple LPARs have the same affinity_group_id, the hypervisor places this group of
LPARs as follows:

� Within the same chip if the total capacity of the group does not exceed the capacity of the
chip

� Within the same drawer (node) if the capacity of the group does not exceed the capacity of
the drawer

The second objective is to give a different priority to one or a group of LPARs. Since Firmware
level 730, when a server frame is rebooted, the hypervisor places all LPARs before their
activation. To decide which partition (or group of partitions) should be placed first, it relies on
affinity_group_id and places the highest number first (from 255 to 1).

The following Hardware Management Console (HMC) CLI command adds or removes a
partition from an affinity group:

chsyscfg -r prof -m <system_name> -i
name=<profile_name>,lpar_name=<partition_name>,affinity_group_id=<group_id>

where group_id is a number between 1 and 255, affinity_group_id=none removes a
partition from the group.

The command shown in Example 2-8 sets the affinty_group_id to 250 to the profile named
Default for the 795_1_AIX1 LPAR.

Example 2-8 Modifying the affinity_group_id flag with the HMC command line

hscroot@hmc24:~> chsyscfg -r prof -m HAUTBRION -i
name=Default,lpar_name=795_1_AIX1,affinity_group_id=250

You can check the affinity_group_id flag of all the partitions of your system with the lsyscfg
command, as described in Example 2-9.

Example 2-9 Checking the affinity_group_id flag of all the partitions with the HMC command line

hscroot@hmc24:~> lssyscfg -r lpar -m HAUTBRION -F name,affinity_group_id
p24n17,none
p24n16,none
795_1_AIX1,250
795_1_AIX2,none
795_1_AIX4,none
795_1_AIX3,none
795_1_AIX5,none
795_1_AIX6,none

POWER 795 SPPL option and LPAR placement
On POWER 795, there is an option called Shared Partition Processor Limit (SPPL). Literally,
this option limits the processor capacity of an LPAR. By default, this option is set to 24 for
Chapter 2. Hardware implementation and LPAR planning 19

POWER 795 with six-core POWER7 chip or 32 for the eight-core POWER7 chip. If your
POWER 795 has three processor books or more, you can set this option to maximum to
remove this limit. This change can be made on the Hardware Management Console (HMC).

Figure 2-7 Changing POWER 795 SPPL option from the HMC

The main objective of the SPPL is not to limit the processor capacity of an LPAR, but to
influence the way the PowerVM hypervisor assigns processor and memory to the LPARs.

� When SPPL is set to 32 (or 24 if six-core POWER7), then the PowerVM hypervisor
allocates processor and memory in the same processor book, if possible. This reduces
access to distant memory to improve memory latency.

� When SPPL is set to maximum, there is no limitation to the number of desired processors
in your LPAR. But large LPAR (more than 24 cores) will be spread across several books to
use more memory DIMMs and maximize the interconnect bandwidth. For example, a
32-core partition in SPPL set to maximum will spread across two books compared to only
one if SPPL is set to 32.

SPPL maximum improves memory bandwidth for large LPARs, but reduces locality of the
memory. This can have a direct impact on applications that are more latency sensitive
compared to memory bandwidth (for example, databases for most of the client workload).

To address this case, a flag can be set on the profile of each large LPAR to signal the
hypervisor to try to allocate processor and memory in a minimum number of books (such as
SPPL 32 or 24). This flag is lpar_placement and can be set with the following HMC command
(Example 2-10 on page 21):

chsyscfg -r prof -m <managed-system> -i
name=<profile-name>,lpar_name=<lpar-name>,lpar_placement=1

Changing SPPL on the Hardware Management Console (HMC): Select your POWER
795 Properties Advanced change Next SPPL to maximum (Figure 2-7). After
changing the SPPL value, you need to stop all your LPARs and restart the POWER 795.
20 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 2-10 Modifying the lpar_placement flag with the HMC command line

This command sets the lpar_placement to 1 to the profile named default for
795_1_AIX1 LPAR:

hscroot@hmc24:~> chsyscfg -r prof -m HAUTBRION -i
name=Default,lpar_name=795_1_AIX1,lpar_placement=1

You can use the lsyscfg command to check the current lpar_placement value for all
the partitions of your system:

hscroot@hmc24:~> lssyscfg -r lpar -m HAUTBRION -F name,lpar_placement
p24n17,0
p24n16,0
795_1_AIX1,1
795_1_AIX2,0
795_1_AIX4,0
795_1_AIX3,0
795_1_AIX5,0
795_1_AIX6,0

Table 2-2 describes in how many books an LPAR is spread by the hypervisor, depending on
the number of processors of this LPAR, SPPL value, and lpar_placement value.

Table 2-2 Number of books used by LPAR depending on SPPL and the lpar_placement value

Force hypervisor to re-optimize LPAR resource placement
As explained in 2.2.2, “PowerVM logical partitioning and NUMA” on page 12, the PowerVM
hypervisor optimizes resource placement on the first LPAR activation. But some operations,
such as dynamic LPAR, may result in memory fragmentation causing LPARs to be spread
across multiple domains. Because the hypervisor keeps track of the placement of each LPAR,
we need to find a way to re-optimize the placement for some partitions.

Number of
processors

Number of books
(SPPL=32)

Number of books
(SPPL=maximum,
lpar_placement=0)

Number of books
(SPPL=maximum,
lpar_placement=1)

8 1 1 1

16 1 1 1

24 1 1 1

32 1 2 1

64 not possible 4 2

Note: The lpar_placement=1 flag is only available for PowerVM Hypervisor eFW 730 and
above. In the 730 level of firmware, lpar_placement=1 was only recognized for dedicated
processors and non-TurboCore mode (MaxCore) partitions when SPPL=MAX.

Starting with the 760 firmware level, lpar_placement=1 is also recognized for shared
processor partitions with SPPL=MAX or systems configured to run in TurboCore mode with
SPPL=MAX.
Chapter 2. Hardware implementation and LPAR planning 21

There are three ways to re-optimize LPAR placement, but they can be disruptive:

� You can shut down all your LPARs, and restart your system. When PowerVM hypervisor is
restarted, it starts to place LPARs starting from the higher group_id to the lower and then
place LPARs without affinity_group_id.

� Shut down all your LPARs and create a new partition in an all-resources mode and
activate it in open firmware. This frees all the resources from your partitions and
re-assigns them to this new LPAR. Then, shut down the all-resources and delete it. You
can now restart your partitions. They will be re-optimized by the hypervisor. Start with the
most critical LPAR to have the best location.

� There is a way to force the hypervisor to forget placement for a specific LPAR. This can be
useful to get processor and memory placement from noncritical LPARs, and force the
hypervisor to re-optimize a critical one. By freeing resources before re-optimization, your
critical LPAR will have a chance to get a better processor and memory placement.

– Stop critical LPARs that should be re-optimized.

– Stop some noncritical LPARs (to free the most resources possible to help the
hypervisor to find a better placement for your critical LPARs).

– Freeing resources from the non-activated LPARs with the following HMC commands.
You need to remove all memory and processors (Figure 2-8):

chhwres -r mem -m <system_name> -o r -q <num_of_Mbytes> --id <lp_id>
chhwres -r proc -m <system_name> -o r --procunits <number> --id <lp_id>

You need to remove all memory and processor as shown in Example 2-11.

You can check the result from the HMC. All resources “Processing Units” and Memory
should be 0, as shown in Figure 2-9 on page 23.

– Restart your critical LPAR. Because all processors and memory are removed from your
LPAR, the PowerVM hypervisor is forced to re-optimize the resource placements for
this LPAR.

– Restart your noncritical LPAR.

Figure 2-8 HMC screenshot before freeing 750_1_AIX1 LPAR resources

Example 2-11 HMC command line to free 750_1_AIX1 LPAR resources

hscroot@hmc24:~> chhwres -r mem -m 750_1_SN106011P -o r -q 8192 --id 10
hscroot@hmc24:~> chhwres -r proc -m 750_1_SN106011P -o r --procunits 1 --id 10

Note: In this section, we give you some ways to force the hypervizor to re-optimize
processor and memory affinity. Most of these solutions are workarounds based on the new
PowerVM options in Firmware level 730.

In Firmware level 760, IBM gives an official solution to this problem with Dynamic Platform
Optimizer (DPO). If you have Firmware level 760 or above, go to “Dynamic Platform
Optimizer” on page 23.
22 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 2-9 HMC screenshot after freeing 750_1_AIX1 LPAR resources

In Figure 2-9, notice that Processing Units and Memory of the 750_1_AIX1 LPAR are now set
to 0. This means that processor and memory placement for this partition will be re-optimized
by the hypervisor on the next profile activation.

Dynamic Platform Optimizer
Dynamic Platform Optimizer (DPO) is a new capability of IBM Power Systems introduced with
Firmware level 760, and announced in October 2012. It is free of charge, available since
October 2012 for POWER 770+, POWER 780+, and since November 2012 for POWER 795.
Basically it allows the hypervisor to dynamically optimize the processor and memory resource
placement of LPARs while they are running (Figure 2-10). This operation needs to be run
manually from the HMC command line.

Figure 2-10 DPO defragmentation illustration

To check whether your system supports DPO: Select your system from your HMC graphical
interface:

Properties Capabilities Check Capabilities for DPO (Figure 2-11 on page 24).

Partition X
Memory

Partition Y
Memory

Partition Z
Memory

Free LMBs

Legend

Partition Y
Processors

Partition X
Processors Partition Z

Processors

Partition X
Processors

Partition Y
Processors

Partition Z
Processors

System
Administrator
Action

Partition X
Processors

Partition Y
Processors

Partition Z
Processors

Partition X
Processors

Partition Y
Processors

Partition Z
Processors

System
Administrator
Action
Chapter 2. Hardware implementation and LPAR planning 23

Figure 2-11 Checking for DPO in system capabilities

Dynamic Platform Optimizer is able to give you a score (from 0 to 100) of the actual resource
placement in your system based on hardware characteristics and partition configuration. A
score of 0 means poor affinity and 100 means perfect affinity.

On the HMC, the command line to get this score is:

lsmemopt -m <system_name> -o currscore

In Example 2-12, you can see that our system affinity is 75.

Example 2-12 HMC DPO command to get system affinity current score

hscroot@hmc56:~> lsmemopt -m Server-9117-MMD-SN101FEF7 -o currscore
curr_sys_score=75

From the HMC, you can also ask for an evaluation of what the score on your system would be
after affinity was optimized using the Dynamic Platform Optimizer.

The HMC command line to get this score is:

lsmemopt -m <system_name> -o calcscore

In Example 2-13 on page 25, you can see that our current system affinity score is 75, and 95
is predicted after re-optimization by DPO.

Note: Depending on the system topology and partition configuration, perfect affinity is not
always possible.

Note: The predicted affinity score is an estimate, and may not match the actual affinity
score after DPO has been run.
24 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 2-13 HMC DPO command to evaluate affinity score after optimization

hscroot@hmc56:~> lsmemopt -m Server-9117-MMD-SN101FEF7 -o calcscore
curr_sys_score=75,predicted_sys_score=95,"requested_lpar_ids=5,6,7,9,10,11,12,13,1
4,15,16,17,18,19,20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,41,42,43,44
,45,46,47,53",protected_lpar_ids=none

When DPO starts the optimization procedure, it starts with LPARs from the highest
affinity_group_id from id 255 to 0 (see “Affinity groups” on page 19), then it continues with
the biggest partition and finishes with the smallest one.

To start affinity optimization with DPO for all partitions in your system, use the following HMC
command:

optmem -m <system_name> -o start -t affinity

To perform this operation, DPO needs free memory available in the system and some
processor cycles. The more resources available for DPO to perform its optimization, the faster
it will be. But be aware that this operation can take time and performance could be degraded;
so this operation should be planned during low activity periods to reduce the impact on your
production environment.

Here are a set of examples to illustrate how to start (Example 2-14), monitor (Example 2-15)
and stop (Example 2-16) a DPO optimization.

Example 2-14 Starting DPO on a system

hscroot@hmc56:~> optmem -m Server-9117-MMD-SN101FEF7 -o start -t affinity

Example 2-15 Monitoring DPO task progress

hscroot@hmc56:~> lsmemopt -m Server-9117-MMD-SN101FEF7
in_progress=0,status=Finished,type=affinity,opt_id=1,progress=100,
requested_lpar_ids=non,protected_lpar_ids=none,”impacted_lpar_ids=106,110”

Example 2-16 Forcing DPO to stop before the end of optimization

hscroot@hmc56:~> optmem -m Server-9117-MMD-SN101FE_F7 -o stop

Partitions running on AIX 7.1 TL2, AIX 6.1 TL8, and IBM i 7.1 PTF MF56058 receive
notification from DPO when the optimization completes, and whether affinity has been
changed for them. This means that all the tools such as lssrad (Example 2-6 on page 16)
can report the changes automatically; but more importantly, the scheduler in these operating
systems is now aware of the new processor and memory affinity topology.

Note: The optmem command-line interface supports a set of “requested” partitions, and a
set of “protected” partitions. The requested ones are prioritized highest. The protected
ones are not touched. Too many protected partitions can adversely affect the affinity
optimization, since their resources cannot participate in the system-wide optimization.

Note: Some functions such as dynamic LPAR and Live Partition Mobility cannot run
concurrently with the optimizer.

Note: Stopping DPO before the end of the optimization process can result in poor affinity
for some partitions.
Chapter 2. Hardware implementation and LPAR planning 25

For older operating systems, the scheduler will not be aware of the affinity topology changes.
This could result in performance degradation. You can exclude these partitions from the DPO
optimization to avoid performance degradation by adding them to the protected partition set
on the optmem command, or reboot the partition to refresh the processor and memory affinity
topology.

2.2.5 Conclusion of processor and memory placement

As you have seen, processor and memory placement is really important when talking about
raw performance. Even if the hypervisor optimizes the affinity, you can influence it and help it
by:

� Knowing your system hardware architecture and planning your LPAR creation.

� Creating and starting critical LPARs first.

� Giving a priority order to your LPAR and correctly setting the affinity_group HMC
parameter.

� Setting the parameter lpar_placement when running on POWER 795 with
SSPL=maximum.

� If possible, use DPO to defragment your LPAR placement and optimize your system.

If you want to continue this Processor and Memory Affinity subject at the AIX operating
system level, refer to 6.1, “Optimizing applications with AIX features” on page 280.

2.3 Performance consequences for I/O mapping and adapter
placement

In this section, we provide adapter placement, which is an important step to consider when
installing or expanding a server.

Environments change all the time, in every way, from a simple hardware upgrade to entire
new machines, and many details come to our attention.

Different machines have different hardware, even when talking about different models of the
same type. The POWER7 family has different types and models from the entry level to
high-end purposes and the latest POWER7 models may have some advantages over their
predecessors. If you are upgrading or acquiring new machines, the same plan used to deploy
the first may not be the optimal for the latest.

Systems with heavy I/O workloads demand machines capable of delivering maximum
throughput and that depends on several architectural characteristics and not only on the
adapters themselves. Buses, chipsets, slots—all of these components must be considered to
achieve maximum performance. And due to the combination of several components,
maximum performance may not be the same that some of them offer individually.

These technologies are always being improved to combine the maximum throughput, but one
of the key points for using them efficiently and to achieve good performance is how they are
combined, and sometimes this can be a difficult task.

Each machine type has a different architecture and an adequate setup is required to obtain
the best I/O throughput from that server. Because the processors and chipsets are connected
through different buses, the way adapters are distributed across the slots on a server directly
affects the I/O performance of the environment.
26 IBM Power Systems Performance Guide: Implementing and Optimizing

Connecting adapters in the wrong slots may not give you the best performance because you
do not take advantage of the hardware design, and worse, it may even cause performance
degradation. Even different models of the same machine type may have important
characteristics for those who want to achieve the highest performance and take full
advantage of their environments.

To illustrate some of the differences that can affect the performance of the environment, we
take a look at the design of two POWER 740 models. In the sequence, we make a brief
comparison between the POWER 740 and the POWER 770, and finally between two models
of the POWER 770.

2.3.1 POWER 740 8205-E6B logical data flow

Figure 2-12 on page 28 presents the logical data flow of the 8205-E6B (POWER 740), one of
the smaller models of the POWER7 family.

Important: Placing the wrong card in the wrong slot may not only not bring you the
performance that you are expecting but can also degrade the performance of your existing
environment.

Note: The next examples are only intended to demonstrate how the designs and
architectures of the different machines can affect the system performance. For other types
of machines, make sure you read the Technical Overview and Introduction documentation
for that specific model, available on the IBM Hardware Information Center at:

http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp
Chapter 2. Hardware implementation and LPAR planning 27

Figure 2-12 POWER 740 8205-E6B - Logic unit flow

The 8205-E6B has two POWER7 chips, each with two GX controllers (GX0 and GX1)
connected to the GX++ slots 1 and 2 and to the internal P5-IOC2 controller. The two GX++
bus slots provide 20 Gbps bandwidth for the expansion units while the P5-IOC2 limits the
bandwidth of the internal slots to 10 GBps only. Further, the GX++ Slot 1 can connect both an
additional P5-IOC2 controller and external expansion units at the same time, sharing its
bandwidth, while GX++ Slot 2 only connects to external expansion units.

Notice that this model also has the Integrated Virtual Ethernet (IVE) ports connected to the
P5-IOC2, sharing the same bandwidth with all the other internal adapters and SAS disks. It
also has an External SAS Port, allowing for more weight over the 10 Gbps chipset.

2.3.2 POWER 740 8205-E6C logical data flow

This is the same picture as seen in the previous section but this time, we have the successor
model 8205-E6C, as shown in Figure 2-13 on page 29.
28 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 2-13 POWER 740 8205-E6C - Logic unit flow

Although the general organization of the picture is a bit different, the design itself is still the
same, but in this version there a few enhancements to notice. First, the 1.25 GHz P5-IOC
from the 8205-E6B has been upgraded to the new P7-IOC with a 2.5 GHz clock on
8205-E6C, raising the channel bandwidth from 10 Gbps to 20 Gbps. Second, the newest
model now comes with PCIe Gen2 slots, which allows peaks of 4 Gbps for x8 interfaces
instead of the 2 Gbps of their predecessors.

Another interesting difference in this design is that the GX++ slots have been flipped. The GX
slot connected to the POWER7 Chip 2 now is the GX++ Slot 1, which provides dedicated
channel and bandwidth to the expansion units. And the POWER7 Chip 1 keeps the two
separate channels for the P7-IOC and the GX++ Slot 2, which can still connect an optional
P7-IOC bus with the riser card.

Finally, beyond the fact that the P7-IOC has an increased bandwidth over the older P5-IOC2,
the 8205-E6C does not come with the External SAS Port (although it is allowed through
adapter expansion), neither the Integrated Virtual Ethernet (IVE) ports, constraining the load
you can put on that bus.

POWER7 Chip 1

4-6-8 cores

P7-IOC

Buffer Buffer

D
IM

M
 #

1

D
IM

M
 #

3

D
IM

M
 #

6

D
IM

M
 #

8

Memory Card #1 Memory Card #2

Memory Card #3 Memory Card #4

PCIe Gen2 x8 (Short, LP) – SLOT #1

PCIe Gen2 x8 (Short, LP) – SLOT #2

PCIe Gen2 x8 (Short, LP) – SLOT #3

PCIe Gen2 x8 (Short, LP) – SLOT #4

GX++ SLOT #2

GX++ SLOT #1

PCIe Gen2 x8 (FH/HL) SLOT #2

PCIe Gen2 x8 (FH/HL) SLOT #3

PCIe Gen2 x8 (FH/HL) SLOT #4

PCIe Gen2 x8 (FH/HL) SLOT #5

PCIe Gen2 x8 (FH/HL) SLOT #1

P7-IOC
(Optional

Expansion)

Optional PCIe Gen2 Riser

PCIe Gen2 x4 (FH/HL) SLOT #6

D
IM

M
 #

5

D
IM

M
 #

7

D
IM

M
 #

2

D
IM

M
 #

4

Buffer Buffer

D
IM

M
 #

1

D
IM

M
 #

3

D
IM

M
 #

6

D
IM

M
 #

8

D
IM

M
 #

5

D
IM

M
 #

7

D
IM

M
 #

2

D
IM

M
 #

4

Buffer BufferBuffer Buffer

D
IM

M
 #

1

D
IM

M
 #

3

D
IM

M
 #

6

D
IM

M
 #

8

D
IM

M
 #

5

D
IM

M
 #

7

D
IM

M
 #

2

D
IM

M
 #

4

D
IM

M
 #

1

D
IM

M
 #

3

D
IM

M
 #

6

D
IM

M
 #

8

D
IM

M
 #

5

D
IM

M
 #

7

D
IM

M
 #

2

D
IM

M
 #

4

TPMD

Memory Controller

SAS
Controller

RAIDs
0,1,10

O
pt

io
na

l R
A

ID
 5

 &

6
 E

xp
a

n
si

o
n

 C
a

rd

D
A

S
D

 &
 M

ed
ia

B

ac
kp

la
ne

HDD1

HDD2

HDD3

HDD4

HDD5

HDD6

DVD

USB #1

2
S

ys
te

m
 P

or
ts

2
.9

 G
b

p
s

2.
9

G
bp

s

2.
9

G
bp

s

6.4 Gbps per channel

6.4 Gbps per channel

2.5 Gbps

2.5 Gbps

2.5 Gbps PCIe
Switch

2
H

M
C

 P
or

ts
2

S
P

C
N

 P
or

ts
V

P
D

 C
hi

p

S
er

vi
ce

P
ro

ce
ss

or

USB #2
USB #3
USB #4

USB
Controller

POWER7 Chip 2

4-6-8 cores

Memory Controller
Chapter 2. Hardware implementation and LPAR planning 29

2.3.3 Differences between the 8205-E6B and 8205-E6C

Table 2-3 gives a clear view of the differences we mentioned.

Table 2-3 POWER 740 comparison - Models 8205-E6B and 8205-E6C

The purpose of this quick comparison is to illustrate important differences that exist among
the different machines that may go unnoticed when the hardware is configured. You may
eventually find out that instead of placing an adapter on a CEC, you may take advantage of
attaching it to an internal slot, if your enclosure is not under a heavy load.

2.3.4 POWER 770 9117-MMC logical data flow

Now we take a brief look to another machine type, and you notice that several differences
exist between the POWER 740 and the POWER 770.

Important: To take full advantage of the PCIe Gen2 slot’s characteristics, compatible
PCIe2 cards must be used. Using the old PCIe Gen1 cards on Gen2 slots is supported, but
although a slight increase of performance may be observed due to the several changes
along the bus, the PCIe Gen1cards are still limited to their own speed by design and
should not be expected to achieve the same performance as the PCIe Gen2 cards.

POWER 740 8205-E6B 8205-E6C

GX++ Slots 2x 20 Gbps 2x 20 Gbps

Internal I/O chipset P5-IOC2 (10 Gbps) P7-IOC (20 Gbps)

PCIe Version Gen1 (2 Gbps) Gen2 (4 Gbps),
Gen1-compatible

Primary GX++ Slot POWER7 Chip 1 (shared
bandwidth)

POWER7 Chip 2 (dedicated
bandwidth)

Secondary GX++ Slot POWER7 Chip2 (dedicated
bandwidth)

POWER7 Chip 1 (shared
bandwidth)

Expansion I/O w/ Riser Card POWER7 Chip 1 POWER7 Chip 1
30 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 2-14 POWER 770 9117-MMC - Logic data flow

As shown in Figure 2-14, the 9117-MMC has a completely different design of the buses. It
now has two P7-IOC chipsets by default and one of them is dedicated to four PCIe Gen2
slots. Moreover, both P7-IOCs are exclusively connected to the POWER7 Chip1 while both
GX++ slots are exclusively connected to the POWER7 Chip2.

2.3.5 POWER 770 9117-MMD logical data flow

As of the time of this writing, the 9117-MMD model featuring the new POWER7+ processors
has recently been announced and once again, along with new features and improvements, a
new design has come, as we can see in Figure 2-15 on page 32.

P7-IOC

GX++ SLOT #2

GX++ SLOT #1

PCIe Gen2 x8 (FH/HL) SLOT #5

PCIe Gen2 x8 (FH/HL) SLOT #6

TPMD

SAS
Controller

Optional
RAID

Exp. Card

HDD1

HDD2

HDD3

HDD4

HDD5

HDD6

DVD

SMP
Connector

A

SMP
Connector

B

SMP
Connector

B

SMP
Connector

A

SAS
Controller

SAS
Controller

Optional
RAID

Exp. Card

PCIe Gen2 x8 (FH/HL) SLOT #2

PCIe Gen2 x8 (FH/HL) SLOT #3

PCIe Gen2 x8 (FH/HL) SLOT #4

PCIe Gen2 x8 (FH/HL) SLOT #1

2 x 10 Gbps + 2 x 1 Gbps Ethernet

P7-IOC

2.46 Gbps

2.46 Gbps

2.46 Gbps

2.46 Gbps

2.46 Gbps

2.46 Gbps

2.46 Gbps

2.46 Gbps

1.0 Gbps

1.0 Gbps

Buffer Buffer Buffer Buffer Buffer Buffer Buffer Buffer

D
IM

M
 #

9

D
IM

M
 #

1
0

D
IM

M
 #

1
1

D
IM

M
 #

1
2

D
IM

M
 #

1
3

D
IM

M
 #

1
4

D
IM

M
 #

1
5

D
IM

M
 #

1
6

6.4 Gbps per
channel

Buffer

D
IM

M
 #

1

D
IM

M
 #

2

6.4 Gbps per
channel

Buffer Buffer
D

IM
M

 #
3

D
IM

M
 #

4

Buffer Buffer

D
IM

M
 #

5

D
IM

M
 #

6

Buffer Buffer

D
IM

M
 #

7

D
IM

M
 #

8

Buffer

2 System Ports
2 HMC Ports
2 SPCN Ports
VPD Chip

Service
Processor

USB #1
USB #2

USB Controller

3.
24

 G
b

p
s

3
.2

4
 G

bp
s

3
.2

4
 G

bp
s

POWER7 Chip 1

6-8 cores

Memory Controller

POWER7 Chip 2

6-8 cores

Memory Controller
Chapter 2. Hardware implementation and LPAR planning 31

Figure 2-15 POWER 770 9117-MMD - Logic data flow

The 9117-MMD now includes four POWER7+ sockets and for the sake of this section, the
major improvement in the design of this model is that the bus sharing has been reduced for
the P7-IOC chipsets and the GX++ controllers by connecting each of these controllers to a
different socket.

Table 2-4 POWER 770 comparison - Models 9117-MMC and 9117-MMD

Once again, this comparison (Table 2-4) illustrates the hardware evolution in the same type of
machines.

2.3.6 Expansion units

Expansion units, as the name says, allow for capacity expansion by providing additional
adapters and disk slots. These units are connected to the GX++ slots by using SPCN and 12x
cables in specific configurations not covered in this book. These types of connections are
designed for minimum latency but still, the more distant the adapters are from the processors,
the more latency is present.

B BusesB Buses

WXZ Buses

4 socket CPU Card
PSI

TPMDTPMD

SN

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

SN

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM
8 SN Dimms

SN

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

SN

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

SN

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

SN

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM

D RAM
8 SN Dimms

S N

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

S N

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M 8 SN Dimms
S N

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

S N

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

S N

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

S N

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M

D RA M 8 SN Dimms

PSI
Mid-Plane

On-board Ethernet
Card

2xUSBAnchor
Card

I/O Backplane

Ext SAS

2x10Gb
2x1Gb Eth

Serial

P
C

I-E
 S

lo
t

P
C

I-E
 S

lo
t

P
C

I-
E

 S
lo

t
P

C
I-

E
 S

lo
t

P
C

I-
E

 S
lo

t
P

C
I-

E
 S

lo
t

P
C

I-
E

 S
lo

t
P

C
I-

E
 S

lo
t

GX++ Busses

2 HMC
2 SPCN

D2D Conns

FSP1 Card
(Drawers 1 & 2)

GX++ Busses

Passthru
Card

(Drawers 3 & 4)

Passthru A Conn

GX++ card Galaxy2Galaxy2

Ethernet
Controller
Ethernet
Controller

Six PCI-e Gen2 8x Slots

PCI-e Gen2 8xPCI-e G1 1x

PCI-e G2 1x
PCI-e G1 1x

P7+P7+ P7+P7+

GX++ SlotGX++ Slot

GX++ SlotGX++ Slot

P7IOC
(A)

P7IOC
(A)

PLX
Serial
PLX

Serial
PCI-e
Gen2 8x

P
C

I-E
 S

lo
t

P
C

I-E
 S

lo
t

P
C

I-E
 S

lo
t

P
C

I-E
 S

lo
t

DASD

Write Cache

Write CacheWrite Cache

SATA

DASD Backplane

Op PanelOp Panel

Media

RAID cardRAID card

usb2

Obsidian EObsidian E

EXPEXP

EXPEXP

P7IOC
(B)

P7IOC
(B)

Obsidian EObsidian E

Obsidian EObsidian E

USB2USB2

PLXPLX

PCI-X 32

P7+P7+ P7+P7+

GX++ card P7IOCP7IOC

POWER 770 9117-MMC 9117-MMD

Sockets per card 2 4

I/O Bus Controller 2x P7-IOC (20 Gbps), sharing
the same chip.

2x P7-IOC (20 Gbps),
independent chips.

GX++ slots (primary and
secondary)

2x GX++ channels, sharing the
same chip.

2x GX++ channels,
independent chips.
32 IBM Power Systems Performance Guide: Implementing and Optimizing

Adapters, cables and enclosures are available with Single Data Rate (SDR) and Double Data
Rate (DDR) capacity. Table 2-5 shows the bandwidth differences between these two types.

Table 2-5 InfiniBand bandwidth table

In order to take full advantage of DDR, the three components (GX++ adapter, cable, and unit)
must be equally capable of transmitting data at that same rate. If any of the components is
SDR only, then the communication channel is limited to SDR speed.

2.3.7 Conclusions

First, the workload requirements must be known and should be established. Defining the
required throughput on an initial installation is quite hard because usually you deal with
several aspects that can make such analysis more difficult, but when expanding a system,
that is data that can be very useful.

Starting at the choice of the proper machine type and model, all of the hardware
characteristics should be carefully studied, deciding on adapter placement to obtain optimal
results in accordance with the workload requirements. Even proper cabling has its
importance.

At the time of partition deployment, assuming that the adapters have been distributed in the
optimal way, assigning the correct slots to the partitions based on their physical placement is
another important step to match the proper workload. Try to establish which partitions are
more critical in regard to each component (processor, memory, disk, and network) and with
that in mind plan their distribution and placement of resources.

2.4 Continuous availability with CHARM

IBM continues to introduce new and advanced continuous Reliability, Availability, and
Serviceability (RAS) functions in the IBM Power Systems to improve overall system
availability. With advanced functions in fault resiliency, recovery, and redundancy design, the
impact to the system from hardware failure has been significantly reduced.

With these system attributes, Power Systems continue to be leveraged for server
consolidation. For clients experiencing rapid growth in computing needs, upgrading hardware
capacity incrementally with limited disruption becomes an important system capability.

Connection type Bandwidth Effective

Single Data Rate (SDR) 2.5 Gbps 2 Gbps

Double Data Rate (DDR) 5 Gbps 4 Gbps

Note: Detailed information about the several available Expansion Units can be obtained on
the IBM Hardware Information Center at:

http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp

Note: Detailed information about each machine type and further adapter placement
documentation can be obtained in the Technical Overview and Introduction and PCI
Adapter Placement documents, available on the IBM Hardware Information Center at:

http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp
Chapter 2. Hardware implementation and LPAR planning 33

In this section we provide a brief overview of the CEC level functions and operations, called
CEC Hot Add and Repair Maintenance (CHARM) functions and the POWER 770/780/795
servers that these functions are supporting. The CHARM functions provide the ability to
upgrade system capacity and repair the CEC, or the heart of a large computer, without
powering down the system.

The CEC hardware includes the processors, memory, I/O hubs (GX adapters), system clock,
service processor, and associated CEC support hardware. The CHARM functions consist of
special hardware design, service processor, hypervisor, and Hardware Management Console
(HMC) firmware. The HMC provides the user interfaces for the system administrator and
System Service Representative (SSR) to perform the tasks for the CHARM operation.

2.4.1 Hot add or upgrade

In this section we describe how to work with nodes during add or upgrade operations.

Hot node add
This function allows the system administrator to add a node to a system to increase the
processor, memory, and I/O capacity of the system. After the physical node installation, the
system firmware activates and integrates the new node hardware into the system.

The new processor and memory resources are available for the creation of new partitions or
to be dynamically added to existing partitions. After the completion of the node add operation,
additional I/O expansion units can be attached to the new GX adapters in the new node in a
separate concurrent I/O expansion unit add operation.

Hot node upgrade (memory)
This function enables an SSR to increase the memory capacity in a system by adding
additional memory DIMMs to a node, or upgrading (exchanging) existing memory with
higher-capacity memory DIMMs.

The system must have two or more nodes to utilize the hot node upgrade function. Since the
node that is being upgraded is functional and possibly running workloads prior to starting the
hot upgrade operation, the system administrator uses the “Prepare for Hot Repair or
Upgrade” utility, system management tools and operating system (OS) tools to prepare the
node for evacuation.

During the hot node upgrade operation, the system firmware performs the node evacuation
by relocating the workloads from the target node to other nodes in the system and logically
isolating the resources in the target node.

It then deactivates and electrically isolates the node to allow the removal of the node for the
upgrade. After the physical node upgrade, the system firmware activates and integrates the
node hardware into the system with additional memory.

After the completion of a hot node upgrade operation, the system administrator then restores
the usage of processor, memory, and I/O resources, including redundant I/O configurations if
present. The new memory resources are available for the creation of new partitions or to be
dynamically added to existing partitions by the system administrator using dynamic LPAR
operations.

Concurrent GX adapter add
This function enables an SSR to add a GX adapter to increase the I/O capacity of the system.
The default settings allow one GX adapter to be added concurrently with a POWER 770/780
34 IBM Power Systems Performance Guide: Implementing and Optimizing

system and two GX adapters to be added concurrently to a POWER 795 system, without
planning for a GX memory reservation.

After the completion of the concurrent GX adapter add operation, I/O expansion units can be
attached to the new GX adapter through separate concurrent I/O expansion unit add
operations.

2.4.2 Hot repair

In this section, we describe the hot repair functionality of the IBM POWER Systems servers.

Hot node repair
This function allows an SSR to repair defective hardware in a node of a system while the
system is powered on.

The system must have two or more nodes to utilize the hot node repair function. Since the
node that is being repaired may be fully or partially functional and running workloads prior to
starting the hot repair operation, the system administrator uses the “Prepare for Hot Repair or
Upgrade” utility, system management tools and OS tools to prepare the system. During the
hot node repair operation, the system firmware performs the node evacuation by relocating
workloads in the target node to other nodes in the system and logically isolating the resources
in the target node.

It then deactivates and electrically isolates the node to allow the removal of the node for
repair. After the physical node repair, the system firmware activates and integrates the node
hardware back into the system.

Hot GX adapter repair
This function allows an SSR to repair a defective GX adapter in the system. The GX adapter
may still be in use prior to starting the hot repair operation, so the system administrator uses
the “Prepare for Hot Repair or Upgrade” utility and OS tools to prepare the system.

During the hot GX repair operation, the system firmware logically isolates the resources
associated with or dependent on the GX adapter, then deactivates and electrically isolates
the GX adapter to allow physical removal for repair.

After the completion of the hot repair operation, the system administrator restores the usage
of I/O resources, including redundant I/O configurations if present.

Concurrent system controller repair
The concurrent System Controller (SC) repair function allows an SSR to concurrently replace
a defective SC card. The target SC card can be fully or partially functional and in the primary
or backup role, or it can be in a nonfunctional state.

After the repair, the system firmware activates and integrates the new SC card into the
system in the backup role.

2.4.3 Prepare for Hot Repair or Upgrade utility

The Prepare for Hot Repair or Upgrade (PHRU) utility is a tool on the HMC used by the
system administrator to prepare the system for a hot node repair, hot node upgrade, or hot
GX adapter repair operation.
Chapter 2. Hardware implementation and LPAR planning 35

Among other things, the utility identifies resources that are in use by operating systems and
must be deactivated or released by the operating system. Based on the PHRU utility's output,
the system administrator may reconfigure or vary off impacted I/O resources using operating
system tools, remove reserved processing units from shared processor pools, reduce active
partitions' entitled processor and/or memory capacity using dynamic LPAR operations, or
shut down low priority partitions.

This utility also runs automatically near the beginning of a hot repair or upgrade procedure to
verify that the system is in the proper state for the procedure. The system firmware does not
allow the CHARM operation to proceed unless the necessary resources have been
deactivated and/or made available by the system administrator and the configuration
supports it.

Table 2-6 summarizes the usage of the PHRU utility based on specific CHARM operations
and expected involvement of the system administrator and service representative.

Table 2-6 PHRU utility usage

2.4.4 System hardware configurations

To obtain the maximum system and partition availability benefits from the CEC Hot Add and
Repair Maintenance functions, follow these best practices and guidelines for system
hardware configuration:

� Request the free pre-sales “I/O Optimization for RAS” services offering to ensure that your
system configuration is optimized to minimize disruptions when using CHARM.

� The system should have spare processor and memory capacity to allow a node to be
taken offline for hot repair or upgrade with minimum impact and memory capacity to take
the node offline.

� All critical I/O resources should be configured using an operating system multipath I/O
redundancy configuration.

� Redundant I/O paths should be configured through different nodes and GX adapters.

� All logical partitions should have RMC network connections with the HMCs.

� The HMC should be configured with redundant service networks with both service
processors in the CEC.

CHARM
operation

Minimum # of
nodes to use
operation

PHRU usage System
administrator

Service
representative

Hot Node Add 1 No Planning only Yes

Hot Node Repair 2 Yes Yes Yes

Hot Node
Upgrade
(memory)

2 Yes Yes Yes

Concurrent GX
Adapter Add

1 No Planning only Yes

Hot GX Adapter
Repair

1 Yes Yes Yes

Concurrent
System
Controller Repair

1 No Planning only Yes
36 IBM Power Systems Performance Guide: Implementing and Optimizing

2.5 Power management

One of the new features introduced with the POWER6 family of servers was Power
Management. This feature is part of the IBM EnergyScale™ technology featured on the
POWER6 processor. IBM EnergyScale provides functions to help monitor and optimize
hardware power and cooling usage. While the complete set of IBM EnergyScale is facilitated
through the IBM Systems Director Active Energy Manager™, the Power Management option
can also be enabled in isolation from the HMC or ASMI interface.

The feature is known on the HMC GUI as Power Management and Power Saver mode on the
ASMI GUI; while in IBM EnergyScale terminology it is referred to as Static Power Saver Mode
(differentiating it from Dynamic Power Saver Mode). Using the HMC it is also possible to
schedule a state change (to either enable or disable the feature). This would allow the feature
to be enabled over a weekend, but disabled on the following Monday morning.

For a complete list of features provided by IBM EnergyScale on POWER6, refer to the white
paper:

http://www-03.ibm.com/systems/power/hardware/whitepapers/energyscale.html

With the advent of the POWER7 platform, IBM EnergyScale was expanded adding increased
granularity along with additional reporting and optimization features. For a complete list of
features provided by IBM EnergyScale on POWER7, refer to this white paper:

http://www-03.ibm.com/systems/power/hardware/whitepapers/energyscale7.html

On both POWER6 and POWER7 platforms, the Power Management feature is disabled by
default. Enabling this feature reduces processor voltage and therefore clock frequency; this
achieves lower power usage for the processor hardware and therefore system as a whole. For
smaller workloads the impact from the reduction in clock frequency will be negligible.
However, for larger or more stressful workloads the impact would be greater.

The amount by which processor clock frequency is reduced differs with machine model and
installed processor feature code. But for a given combination of model and processor the
amount is fixed. For detailed tables listing all the support combinations refer to Appendix I in
either of the previously mentioned white papers.

The output from the lparstat command lists the current status, as shown at the end of the
output in Example 2-17.

Example 2-17 Running lparstat

lparstat -i
Node Name : p750s1aix6
Partition Name : 750_1_AIX6
Partition Number : 15
Type : Shared-SMT-4

Note: Refer to the IBM POWER 770/780 and 795 Servers CEC Hot Add and Repair
Maintenance Technical Overview at:

ftp://public.dhe.ibm.com/common/ssi/ecm/en/pow03058usen/POW03058USEN.PDF

Note: When enabled, certain commands can be used to validate the state and impact of
the change. Care must be taken to not misinterpret output from familiar commands.
Chapter 2. Hardware implementation and LPAR planning 37

ftp://public.dhe.ibm.com/common/ssi/ecm/en/pow03058usen/POW03058USEN.PDF
http://www-03.ibm.com/systems/power/hardware/whitepapers/energyscale.html
http://www-03.ibm.com/systems/power/hardware/whitepapers/energyscale7.html

Mode : Uncapped
Entitled Capacity : 1.00
Partition Group-ID : 32783
Shared Pool ID : 0
Online Virtual CPUs : 8
Maximum Virtual CPUs : 8
Minimum Virtual CPUs : 1
Online Memory : 8192 MB
Maximum Memory : 16384 MB
Minimum Memory : 4096 MB
Variable Capacity Weight : 128
Minimum Capacity : 0.50
Maximum Capacity : 4.00
Capacity Increment : 0.01
Maximum Physical CPUs in system : 16
Active Physical CPUs in system : 16
Active CPUs in Pool : 10
Shared Physical CPUs in system : 10
Maximum Capacity of Pool : 1000
Entitled Capacity of Pool : 1000
Unallocated Capacity : 0.00
Physical CPU Percentage : 12.50%
Unallocated Weight : 0
Memory Mode : Dedicated
Total I/O Memory Entitlement : -
Variable Memory Capacity Weight : -
Memory Pool ID : -
Physical Memory in the Pool : -
Hypervisor Page Size : -
Unallocated Variable Memory Capacity Weight: -
Unallocated I/O Memory entitlement : -
Memory Group ID of LPAR : -
Desired Virtual CPUs : 8
Desired Memory : 8192 MB
Desired Variable Capacity Weight : 128
Desired Capacity : 1.00
Target Memory Expansion Factor : -
Target Memory Expansion Size : -
Power Saving Mode : Disabled

In the case where the feature is enabled from the HMC or ASMI, the difference in output from
the same command is shown in Example 2-18.

Example 2-18 lparstat output with power saving enabled

Desired Virtual CPUs : 8
Desired Memory : 8192 MB
Desired Variable Capacity Weight : 128
Desired Capacity : 1.00
Target Memory Expansion Factor : -
Target Memory Expansion Size : -
Power Saving Mode : Static Power Savings
38 IBM Power Systems Performance Guide: Implementing and Optimizing

Once enabled, the new operational clock speed is not always apparent from AIX. Certain
commands still report the default clock frequency, while others report the actual current
frequency. This is because some commands are simply retrieving the default frequency
stored in the ODM. Example 2-19 represents output from the lsconf command.

Example 2-19 Running lsconf

lsconf
System Model: IBM,8233-E8B
Machine Serial Number: 10600EP
Processor Type: PowerPC_Power7
Processor Implementation Mode: Power 7
Processor Version: PV_7_Compat
Number Of Processors: 8
Processor Clock Speed: 3300 MHz

The same MHz is reported as standard by the pmcycles command as shown in
Example 2-20.

Example 2-20 Running pmcycles

pmcycles
This machine runs at 3300 MHz

However, using the -M parameter instructs pmcycles to report the current frequency as shown
in Example 2-21.

Example 2-21 Running pmcycles -M

pmcycles -M
This machine runs at 2321 MHz

The lparstart command represents the reduced clock speed as a percentage, as reported in
the %nsp (nominal speed) column in Example 2-22.

Example 2-22 Running lparstat with Power Saving enabled

lparstat -d 2 5

System configuration: type=Shared mode=Uncapped smt=4 lcpu=32 mem=8192MB psize=16
ent=1.00

%user %sys %wait %idle physc %entc %nsp
----- ----- ------ ------ ----- ----- -----
 94.7 2.9 0.0 2.3 7.62 761.9 70
 94.2 3.1 0.0 2.7 7.59 759.1 70
 94.5 3.0 0.0 2.5 7.61 760.5 70
 94.6 3.0 0.0 2.4 7.64 763.7 70
 94.5 3.0 0.0 2.5 7.60 760.1 70

In this example, the current 2321 MHz is approximately 70% of the default 3300 MHz.

Note: It is important to understand how to query the status of Power Saving mode on a
given LPAR or system. Aside from the reduced clock speed, it can influence or reduce the
effectiveness of other PowerVM optimization features.
Chapter 2. Hardware implementation and LPAR planning 39

For example, enabling Power Saving mode also enables virtual processor management in a
dedicated processor environment. If Dynamic System Optimizer (6.1.2, “IBM AIX Dynamic
System Optimizer” on page 288) is also active on the LPAR, it is unable to leverage its cache
and memory affinity optimization routines.
40 IBM Power Systems Performance Guide: Implementing and Optimizing

Chapter 3. IBM Power Systems
virtualization

In this chapter, we describe some of the features and tools to optimize virtualization on
POWER Systems running AIX. This includes PowerVM components and AIX Workload
Partitions (WPAR). Virtualization when deployed correctly provides the best combination of
performance and utilization of a system. Relationships and dependencies between some of
the components need to be understood and observed. It is critical that the different elements
are correctly configured and tuned to deliver optimal performance.

We discuss the following topics in this chapter:

� Optimal logical partition (LPAR) sizing

� Active Memory Expansion

� Active Memory Sharing (AMS)

� Active Memory Deduplication (AMD)

� Virtual I/O Server (VIOS) sizing

� Using Virtual SCSI, Shared Storage Pools and N-Port Virtualization

� Optimal Shared Ethernet Adapter configuration

� AIX Workload Partition implications, performance and suggestions

� LPAR suspend and resume best practices

3

© Copyright IBM Corp. 2013. All rights reserved. 41

3.1 Optimal logical partition (LPAR) sizing

A common theme throughout this book is to understand your workload and size your logical
partitions appropriately. In this section we focus on some of the processor and memory
settings available in the LPAR profile and provide guidance on how to set them to deliver
optimal performance.

This section is divided into two parts, processor and memory.

Processor
There are a number of processor settings available. Some have more importance than others
in terms of performance. Table 3-1 provides a summary of the processor settings available in
the LPAR profile, a description of each, and some guidance on what values to consider.

Table 3-1 Processor settings in LPAR profile

Setting Description Recommended value

Minimum Processing Units This is the minimum amount of
processing units that must be
available for the LPAR to be
activated. Using DLPAR,
processing units can be removed to
a minimum of this value.

This value should be set to
the minimum number of
processing units that the
LPAR would realistically be
assigned.

Desired Processing Units This is the desired amount of
processing units reserved for the
LPAR; this is also known as the
LPAR’s entitled capacity (EC).

This value should be set to
the average utilization of the
LPAR during peak workload.

Maximum Processing Units This is the maximum amount of
processing units that can be added
to the LPAR using a DLPAR
operation.

This value should be set to
the maximum number of
processing units that the
LPAR would realistically be
assigned.

Minimum Virtual Processors This is the minimum amount of
virtual processors that can be
assigned to the LPAR with DLPAR.

This value should be set to
the minimum number of
virtual processors that the
LPAR would be realistically
assigned.

Desired Virtual Processors This is the desired amount of virtual
processors that will be assigned to
the LPAR when it is activated. This
is also referred to as virtual
processors (VPs).

This value should be set to
the upper limit of processor
resources utilized during
peak workload.

Maximum Virtual Processors This the maximum amount of virtual
processors that can be assigned to
the LPAR using a DLPAR operation.

This value should be set to
the maximum number of
virtual processors that the
LPAR would be realistically
assigned.
42 IBM Power Systems Performance Guide: Implementing and Optimizing

There are situations where it is required in a Power system to have multiple shared processor
pools. A common reason for doing this is for licensing constraints where licenses are by
processor, and there are different applications running on the same system. When this is the
case, it is important to size the shared processor pool to be able to accommodate the peak
workload of the LPARs in the shared pool.

In addition to dictating the maximum number of virtual processors that can be assigned to an
LPAR, the entitled capacity is a very important setting that must be set correctly. The best
practice for setting this is to set it to the average processor utilization during peak workload.
The sum of the entitled capacity assigned to all the LPARs in a Power system should not be
more than the amount of physical processors in the system or shared processor pool.

The virtual processors in an uncapped LPAR dictate the maximum amount of idle processor
resources that can be taken from the shared pool when the workload goes beyond the
capacity entitlement. The number of virtual processors should not be sized beyond the
amount of processor resources required by the LPAR, and it should not be greater than the
total amount of processors in the Power system or in the shared processor pool.

Figure 3-1 on page 44 shows a sample workload with the following characteristics:

� The system begins its peak workload at 8:00 am.

� The system’s peak workload stops at around 6:30 pm.

� The ideal entitled capacity for this system is 25 processors, which is the average utilization
during peak workload.

� The ideal number of virtual processors is 36, which is the maximum amount of virtual
processors used during peak workload.

Sharing Mode Uncapped LPARs can use
processing units that are not being
used by other LPARs, up to the
number of virtual processors
assigned to the uncapped LPAR.
Capped LPARs can use only the
number of processing units that are
assigned to them. In this section we
focus on uncapped LPARs.

For LPARs that will consume
processing units above their
entitled capacity, it is
recommended to have the
LPAR configured as
uncapped.

Uncapped Weight When contending for shared
resources with other LPARs, this is
the priority that this logical partition
has when contention for shared
virtual resources exists.

This is the relative weight
that the LPAR will have
during resource contention.
This value should be set
based on the importance of
the LPAR compared to other
LPARs in the system. It is
suggested that the VIO
servers have highest weight.

Setting Description Recommended value
Chapter 3. IBM Power Systems virtualization 43

Figure 3-1 Graph of a workload over a 24-hour period

For LPARs with dedicated processors (these processors are not part of the shared processor
pool), there is an option to enable this LPAR after it is activated for the first time to donate idle
processing resources to the shared pool. This can be useful for LPARs with dedicated
processors that do not always use 100% of the assigned processing capacity.

Figure 3-2 demonstrates where to set this setting in an LPAR’s properties. It is important to
note that sharing of idle capacity when the LPAR is not activated is enabled by default.
However, the sharing of idle capacity when the LPAR is activated is not enabled by default.

Figure 3-2 Dedicated LPAR sharing processing units
44 IBM Power Systems Performance Guide: Implementing and Optimizing

There are performance implications in the values you choose for the entitled capacity and the
number of virtual processors assigned to the partition. These are discussed in detail in the
following sections:

� “Optimizing the LPAR resource placement” on page 18.

� “Simultaneous multithreading (SMT)” on page 120 and “Processor folding” on page 123.

We were able to perform a simple test to demonstrate the implications of sizing the entitled
capacity of an AIX LPAR. The first test is shown in Figure 3-3 and the following observations
were made:

� The entitled capacity (EC) is 6.4 and the number of virtual processors is 64. There are 64
processors in the POWER7 780 that this test was performed on.

� When the test was executed, due to the time taken for the AIX scheduler to perform
processor unfolding, the time taken for the workload to have access to the required cores
was 30 seconds.

Figure 3-3 Folding effect with EC set too low

The same test was performed again, with the entitled capacity raised from 6.4 processing
units to 50 processing units. The second test is shown in Figure 3-4 on page 46 and the
following observations were made:

� The entitled capacity is 50 and the number of virtual processors is still 64.

� The amount of processor unfolding the hypervisor had to perform was significantly
reduced.

� The time taken for the workload to access the processing capacity went from 30 seconds
to 5 seconds.
Chapter 3. IBM Power Systems virtualization 45

Figure 3-4 Folding effect with EC set higher; fasten your seat belts

The conclusion of the test: we found that tuning the entitled capacity correctly in this case
provided us with a 16% performance improvement, simply due to the unfolding process.
Further gains would also be possible related to memory access due to better LPAR
placement, because there is an affinity reservation for the capacity entitlement.

Memory
Sizing memory is also an important consideration when configuring an AIX logical partition.

Table 3-2 provides a summary of the memory settings available in the LPAR profile.

Table 3-2 Memory settings in LPAR profile

When sizing the desired amount of memory, it is important that this amount will satisfy the
workload’s memory requirements. Adding more memory using dynamic LPAR can have an
effect on performance due to affinity. This is described in 2.2.3, “Verifying processor memory
placement” on page 14.

Setting Description Recommended value

Minimum memory This is the minimum amount of
memory that must be available
for the LPAR to be activated.
Using DLPAR, memory can be
removed to a minimum of this
value.

This value should be set to the
minimum amount of memory
that the LPAR would realistically
be assigned.

Desired memory This is the amount of memory
assigned to the LPAR when it is
activated. If this amount is not
available the hypervisor will
assign as much available
memory as possible to get
close to this number.

This value should reflect the
amount of memory that is
assigned to this LPAR under
normal circumstances.

Maximum memory This is the maximum amount of
memory that can be added to
the LPAR using a DLPAR
operation.

This value should be set to the
maximum amount of memory
that the LPAR would realistically
be assigned.

AME expansion factor See 3.2, “Active Memory
Expansion” on page 48.

See 3.2, “Active Memory
Expansion” on page 48
46 IBM Power Systems Performance Guide: Implementing and Optimizing

Another factor to consider is the maximum memory assigned to a logical partition. This
affects the hardware page table (HPT) of the POWER system. The HPT is the amount of
memory assigned from the memory reserved by the POWER hypervisor. If the maximum
memory for an LPAR is set very high, the amount of memory required for the HPT increases,
causing a memory overhead on the system.

On POWER5, POWER6 and POWER7 systems the HPT is calculated by the following
formula, where the sum of all the LPAR’s maximum memory is divided by a factor of 64 to
calculate the HPT size:

HPT = sum_of_lpar_max_memory / 64

On POWER7+ systems the HPT is calculated using a factor of 64 for IBM i and any LPARs
using Active Memory Sharing. However, for AIX and Linux LPARs the HPT is calculated using
a factor of 128.

Example 3-1demonstrates how to display the default HPT ratio from the HMC command line
for the managed system 750_1_SN106011P, which is a POWER7 750 system.

Example 3-1 Display the default HPT ratio on a POWER7 system

hscroot@hmc24:~> lshwres -m 750_1_SN106011P -r mem --level sys -F default_hpt_ratios
1:64
hscroot@hmc24:~>

Figure 3-5 provides a sample of the properties of a POWER7 750 system. The amount of
memory installed in the system is 256 GB, all of which is activated.

The memory allocations are as follows:

� 200.25 GB of memory is not assigned to any LPAR.

� 52.25 GB of memory is assigned to LPARs currently running on the system.

� 3.50 GB of memory is reserved for the hypervisor.

Figure 3-5 Memory assignments for a managed system
Chapter 3. IBM Power Systems virtualization 47

3.2 Active Memory Expansion

Active Memory Expansion (AME) is an optional feature of IBM POWER7 and POWER7+
systems for expanding a system’s effective memory capacity by performing memory
compression. AME is enabled on a per-LPAR basis. Therefore, AME can be enabled on some
or all of the LPARs on a Power system. POWER7 systems use LPAR processor cycles to
perform the compression in software.

AME enables memory to be allocated beyond the amount that is physically installed in the
system, where memory can be compressed on an LPAR and the memory savings can be
allocated to another LPAR to improve system utilization, or compression can be used to
oversubscribe memory to potentially improve performance.

AME is available on POWER7 and POWER7+ systems with AIX 6.1 Technology Level 4 and
AIX 7.1 Service Pack 2 and above.

Active Memory Expansion is not ordered as part of any PowerVM edition. It is licensed as a
separate feature code, and can be ordered with a new system, or added to a system at a later
time. Table 3-3 provides the feature codes to order AME at the time of writing.

Table 3-3 AME feature codes

In this section we discuss the use of active memory expansion compression technology in
POWER7 and POWER7+ systems. A number of terms are used in this section to describe
AME. Table 3-4 provides a list of these terms and their meaning.

Table 3-4 Terms used in this section

Important: Do not size your LPAR’s maximum memory too large, because there will be an
increased amount of reserved memory for the HPT.

Feature code Description

4795 Active Memory Expansion Enablement POWER 710 and 730

4793 Active Memory Expansion Enablement POWER 720

4794 Active Memory Expansion Enablement POWER 740

4792 Active Memory Expansion Enablement POWER 750

4791 Active Memory Expansion Enablement POWER 770 and 780a

a. This includes the Power 770+ and Power 780+ server models.

4790 Active Memory Expansion Enablement POWER 795

Term Meaning

LPAR true memory The LPAR true memory is the amount of real memory assigned to
the LPAR before compression.

LPAR expanded memory The LPAR expanded memory is the amount of memory available to
an LPAR after compression. This is the amount of memory an
application running on AIX will see as the total memory inside the
system.
48 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 3-6 on page 50 provides an overview of how AME works. The process of memory
access is such that the application is accessing memory directly from the uncompressed
pool. When memory pages that exist in the compressed pool are to be accessed, they are
moved into the uncompressed pool for access. Memory that exists in the uncompressed pool
that is no longer needed for access is moved into the compressed pool and subsequently
compressed.

Expansion factor To enable AME, there is a single setting that must be set in the
LPAR's profile. This is the expansion factor, which dictates the target
memory capacity for the LPAR. This is calculated by this formula:
LPAR_EXPANDED_MEM = LPAR_TRUE_MEM * EXP_FACTOR

Uncompressed pool When AME is enabled, the operating system’s memory is broken up
into two pools, an uncompressed pool and a compressed pool. The
uncompressed pool contains memory that is uncompressed and
available to the application.

Compressed pool The compressed pool contains memory pages that are compressed
by AME. When an application needs to access memory pages that
are compressed, AME uncompresses them and moves them into
the uncompressed pool for application access. The size of the pools
will vary based on memory access patterns and the memory
compression factor.

Memory deficit When an LPAR is configured with an AME expansion factor that is
too high based on the compressibility of the workload. When the
LPAR cannot reach the LPAR expanded memory target, the amount
of memory that cannot fit into the memory pools is known as the
memory deficit, which might cause paging activity. The expansion
factor and the true memory can be changed dynamically, and when
the expansion factor is set correctly, no memory deficit should occur.

Term Meaning
Chapter 3. IBM Power Systems virtualization 49

Figure 3-6 Active Memory Expansion overview

The memory gain from AME is determined by the expansion factor. The minimum expansion
factor is 1.0 meaning no compression, and the maximum value is 10.0 meaning 90%
compression.

Each expansion value has an associated processor overhead dependent on the type of
workload. If the expansion factor is high, then additional processing is required to handle the
memory compression and decompression. The kernel process in AIX is named cmemd, which
performs the AME compression and decompression. This process can be monitored from
topas or nmon to view its processor usage. The AME planning tool amepat covered in 3.2.2,
“Sizing with the active memory expansion planning tool” on page 52 describes how to
estimate and monitor the cmemd processor usage.

The AME expansion factor can be set in increments of 0.01. Table 3-5 gives an overview of
some of the possible expansion factors to demonstrate the memory gains associated with the
different expansion factors.

Table 3-5 Sample expansion factors and associated memory gains

Note: These are only a subset of the expansion factors. The expansion factor can be set
anywhere from 1.00 to 10.00 increasing by increments of 0.01.

Expansion factor Memory gain

1.0 0%

1.2 20%

1.4 40%

Compressed Pool

Uncompressed Pool

Compressed Pool

Uncompressed Pool

Memory Deficit

Compress
&

De-Compress

LPAR true memory LPAR expanded memory

X
 G

B

X
 G

B
 *

 E
xp

an
si

on
 F

ac
to

r

50 IBM Power Systems Performance Guide: Implementing and Optimizing

3.2.1 POWER7+ compression accelerator

A new feature in POWER7+ processors is the nest accelerator (NX). The nest accelerator
contains accelerators also known as coprocessors, which are shared resources used by the
hypervisor for the following purposes:

� Encryption for JFS2 Encrypted file systems

� Encryption for standard cryptography APIs

� Random number generation

� AME hardware compression

Each POWER7+ chip contains a single NX unit and multiple cores, depending on the model,
and these cores all share the same NX unit. The NX unit allows some of the AME processing
to be off-loaded to significantly reduce the amount of processor overhead involved in
compression and decompression. Where multiple LPARs are accessing the NX unit for
compression at once, the priority is on a first in first out (FIFO) basis.

As with the relationship between processor and memory affinity, optimal performance is
achieved when the physical memory is in the same affinity domain as the NX unit. AIX
creates compressed pools on affinity domain boundaries and makes the best effort to allocate
from the local memory pool.

AIX automatically leverages hardware compression for AME when available. Configuring
AME on POWER7+ is achieved by following exactly the same process as on POWER7.
However, to leverage hardware compression AIX 6.1 Technology Level 8 or AIX 7.1
Technology Level 2 or later are required.

The active memory expansion planning tool amepat has also been updated as part of these
same AIX Technology Levels to suggest compression savings and associated processing
overhead using hardware compression. Example 3-4 on page 54 illustrates this amepat
enhancement.

Figure 3-7 on page 52 demonstrates how to confirm that hardware compression is enabled
on a POWER7+ system.

1.6 60%

1.8 80%

2.0 100%

2.5 150%

3.0 200%

3.5 250%

4.0 300%

5.0 400%

10.0 900%

Expansion factor Memory gain
Chapter 3. IBM Power Systems virtualization 51

Figure 3-7 Confirming that hardware compression is available

3.2.2 Sizing with the active memory expansion planning tool

The active memory expansion planning tool amepat is a utility that should be run on the
system on which you are evaluating the use of AME. When executed, amepat records system
configuration and various performance metrics to provide guidance on possible AME
configurations, and their processing impact. The tool should be run prior to activating AME,
and run again after activating AME to continually evaluate the memory configuration.

The amepat tool provides a report with possible AME configurations and a recommendation
based on the data it collected during the time it was running.

For best results, it is best to consider the following points:

� Run amepat during peak workload.

� Ensure that you run amepat for the full duration of the peak workload.

� The tool can be run in the foreground, or in recording mode.

� It is best to run the tool in recording mode, so that multiple configurations can be evaluated
against the record file rather than running the tool in the foreground multiple times.

Note: The compression accelerator only handles the compression of memory in the
compressed pool. The LPAR’s processor is still used to manage the moving of memory
between the compressed and the uncompressed pool. The benefit of the accelerator is
dependent on your workload characteristics.
52 IBM Power Systems Performance Guide: Implementing and Optimizing

� Once the tool has been run once, it is reconnected running it again with a range of
expansion factors to find the optimal value.

� Once AME is active, it is suggested to continue running the tool, because the workload
may change resulting in a new expansion factor being recommended by the tool.

The amepat tool is available as part of AIX starting at AIX 6.1 Technology Level 4 Service
Pack 2.

Example 3-2 demonstrates running amepat with the following input parameters:

� Run the report in the foreground.

� Run the report with a starting expansion factor of 1.20.

� Run the report with an upper limit expansion factor of 2.0.

� Include only POWER7 software compression in the report.

� Run the report to monitor the workload for 5 minutes.

Example 3-2 Running amepat with software compression

root@aix1:/ # amepat -e 1.20:2.0:0.1 -O proc=P7 5

Command Invoked : amepat -e 1.20:2.0:0.1 -O proc=P7 5

Date/Time of invocation : Tue Oct 9 07:33:53 CDT 2012
Total Monitored time : 7 mins 21 secs
Total Samples Collected : 3

System Configuration:

Partition Name : aix1
Processor Implementation Mode : Power7 Mode
Number Of Logical CPUs : 16
Processor Entitled Capacity : 2.00
Processor Max. Capacity : 4.00
True Memory : 8.00 GB
SMT Threads : 4
Shared Processor Mode : Enabled-Uncapped
Active Memory Sharing : Disabled
Active Memory Expansion : Enabled
Target Expanded Memory Size : 8.00 GB
Target Memory Expansion factor : 1.00

System Resource Statistics: Average Min Max
--------------------------- ----------- ----------- -----------
CPU Util (Phys. Processors) 1.41 [35%] 1.38 [35%] 1.46 [36%]
Virtual Memory Size (MB) 5665 [69%] 5665 [69%] 5665 [69%]
True Memory In-Use (MB) 5880 [72%] 5880 [72%] 5881 [72%]
Pinned Memory (MB) 1105 [13%] 1105 [13%] 1105 [13%]
File Cache Size (MB) 199 [2%] 199 [2%] 199 [2%]
Available Memory (MB) 2303 [28%] 2303 [28%] 2303 [28%]

AME Statistics: Average Min Max
--------------- ----------- ----------- -----------
AME CPU Usage (Phy. Proc Units) 0.00 [0%] 0.00 [0%] 0.00 [0%]
Compressed Memory (MB) 0 [0%] 0 [0%] 0 [0%]
Compression Ratio N/A

Active Memory Expansion Modeled Statistics :

Chapter 3. IBM Power Systems virtualization 53

Modeled Implementation : Power7
Modeled Expanded Memory Size : 8.00 GB
Achievable Compression ratio :0.00

Expansion Modeled True Modeled CPU Usage
Factor Memory Size Memory Gain Estimate
--------- ------------- ------------------ -----------
 1.00 8.00 GB 0.00 KB [0%] 0.00 [0%] << CURRENT CONFIG
 1.28 6.25 GB 1.75 GB [28%] 0.41 [10%]
 1.40 5.75 GB 2.25 GB [39%] 1.16 [29%]
 1.46 5.50 GB 2.50 GB [45%] 1.54 [39%]
 1.53 5.25 GB 2.75 GB [52%] 1.92 [48%]
 1.69 4.75 GB 3.25 GB [68%] 2.68 [67%]
 1.78 4.50 GB 3.50 GB [78%] 3.02 [75%]
 1.89 4.25 GB 3.75 GB [88%] 3.02 [75%]
 2.00 4.00 GB 4.00 GB [100%] 3.02 [75%]

Active Memory Expansion Recommendation:

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 6.25 GB and to configure a memory expansion factor
of 1.28. This will result in a memory gain of 28%. With this
configuration, the estimated CPU usage due to AME is approximately 0.41
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 1.86 physical processors.

NOTE: amepat's recommendations are based on the workload's utilization level
during the monitored period. If there is a change in the workload's utilization
level or a change in workload itself, amepat should be run again.

The modeled Active Memory Expansion CPU usage reported by amepat is just an
estimate. The actual CPU usage used for Active Memory Expansion may be lower
or higher depending on the workload.

Rather than running the report in the foreground each time you want to compare different
AME configurations and expansion factors, it is suggested to run the tool in the background
and record the statistics in a recording file for later use, as shown in Example 3-3.

Example 3-3 Create a 60-minute amepat recording to /tmp/ame.out

root@aix1:/ # amepat -R /tmp/ame.out 60
Continuing Recording through background process...
root@aix1:/ # ps -aef |grep amepat
 root 4587544 1 0 07:48:28 pts/0 0:25 amepat -R /tmp/ame.out 5
root@aix1:/ #

Once amepat has completed its recording, you can run the same amepat command as used
previously in Example 3-2 on page 53 with the exception that you specify a -P option to
specify the recording file to be processed rather than a time interval.

Example 3-4 demonstrates how to run amepat against a recording file, with the same AME
expansion factor input parameters used in Example 3-2 on page 53 to compare software
compression with hardware compression. The -O proc=P7+ option specifies that amepat is to
run the report using POWER7+ hardware with the compression accelerator.

Example 3-4 Running amepat against the record file with hardware compression

root@aix1:/ # amepat -e 1.20:2.0:0.1 -O proc=P7+ -P /tmp/ame.out
54 IBM Power Systems Performance Guide: Implementing and Optimizing

Command Invoked : amepat -e 1.20:2.0:0.1 -O proc=P7+ -P /tmp/ame.out

Date/Time of invocation : Tue Oct 9 07:48:28 CDT 2012
Total Monitored time : 7 mins 21 secs
Total Samples Collected : 3

System Configuration:

Partition Name : aix1
Processor Implementation Mode : Power7 Mode
Number Of Logical CPUs : 16
Processor Entitled Capacity : 2.00
Processor Max. Capacity : 4.00
True Memory : 8.00 GB
SMT Threads : 4
Shared Processor Mode : Enabled-Uncapped
Active Memory Sharing : Disabled
Active Memory Expansion : Enabled
Target Expanded Memory Size : 8.00 GB
Target Memory Expansion factor : 1.00

System Resource Statistics: Average Min Max
--------------------------- ----------- ----------- -----------
CPU Util (Phys. Processors) 1.41 [35%] 1.38 [35%] 1.46 [36%]
Virtual Memory Size (MB) 5665 [69%] 5665 [69%] 5665 [69%]
True Memory In-Use (MB) 5881 [72%] 5881 [72%] 5881 [72%]
Pinned Memory (MB) 1105 [13%] 1105 [13%] 1106 [14%]
File Cache Size (MB) 199 [2%] 199 [2%] 199 [2%]
Available Memory (MB) 2302 [28%] 2302 [28%] 2303 [28%]

AME Statistics: Average Min Max
--------------- ----------- ----------- -----------
AME CPU Usage (Phy. Proc Units) 0.00 [0%] 0.00 [0%] 0.00 [0%]
Compressed Memory (MB) 0 [0%] 0 [0%] 0 [0%]
Compression Ratio N/A

Active Memory Expansion Modeled Statistics :

Modeled Implementation : Power7+
Modeled Expanded Memory Size : 8.00 GB
Achievable Compression ratio :0.00

Expansion Modeled True Modeled CPU Usage
Factor Memory Size Memory Gain Estimate
--------- ------------- ------------------ -----------
 1.00 8.00 GB 0.00 KB [0%] 0.00 [0%]
 1.28 6.25 GB 1.75 GB [28%] 0.14 [4%]
 1.40 5.75 GB 2.25 GB [39%] 0.43 [11%]
 1.46 5.50 GB 2.50 GB [45%] 0.57 [14%]
 1.53 5.25 GB 2.75 GB [52%] 0.72 [18%]
 1.69 4.75 GB 3.25 GB [68%] 1.00 [25%]
 1.78 4.50 GB 3.50 GB [78%] 1.13 [28%]
 1.89 4.25 GB 3.75 GB [88%] 1.13 [28%]
 2.00 4.00 GB 4.00 GB [100%] 1.13 [28%]

Active Memory Expansion Recommendation:

The recommended AME configuration for this workload is to configure the LPAR
Chapter 3. IBM Power Systems virtualization 55

with a memory size of 5.50 GB and to configure a memory expansion factor
of 1.46. This will result in a memory gain of 45%. With this
configuration, the estimated CPU usage due to AME is approximately 0.57
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 2.03 physical processors.

NOTE: amepat's recommendations are based on the workload's utilization level
during the monitored period. If there is a change in the workload's utilization
level or a change in workload itself, amepat should be run again.

The modeled Active Memory Expansion CPU usage reported by amepat is just an
estimate. The actual CPU usage used for Active Memory Expansion may be lower
or higher depending on the workload.

This shows that for an identical workload, POWER7+ enables a significant reduction in the
processor overhead using hardware compression compared with POWER7 software
compression.

3.2.3 Suitable workloads

Before enabling AME on an LPAR to benefit a given workload, some initial considerations
need to be made to understand the workload’s memory characteristics. This will affect the
benefit that can be gained from the use of AME.

� The better a workload’s data can be compressed, the higher the memory expansion factor
that can be achieved with AME. The amepat tool can perform analysis. Data stored in
memory that is not already compressed in any form is a good candidate for AME.

� Memory access patterns affect how well AME will perform. When memory is accessed, it
is moved from the compressed pool to the uncompressed pool. If a small amount of the
memory is frequently accessed, and a large amount is not frequently accessed, this type
of workload will perform best with AME.

� Workloads that use a large portion of memory for a file system cache will not benefit
substantially from AME, because file system cache memory will not be compressed.

� Workloads that have pinned memory or large pages may not experience the full benefit of
AME because pinned memory and large memory pages cannot be compressed.

� Memory resource provided by AME cannot be used to create a RAMDISK in AIX.

� Compression of 64k pages is disabled by setting the tunable vmm_mpsize_support to -1 by
default. This can be changed to enable compression of 64k pages. However, the overhead
of decompressing 64k pages (treated as 16 x 4k pages) outweighs the performance
benefit of using medium 64k pages. It is in most cases not advised to compress 64k
pages.

Note: The -O proc=value option in amepat is available in AIX 6.1 TL8 and AIX 7.2 TL2 and
later.

Note: Using the amepat tool provides guidance of the memory savings achievable by
using Active Memory Expansion.
56 IBM Power Systems Performance Guide: Implementing and Optimizing

3.2.4 Deployment

Once you have run the amepat tool, and have an expansion factor in mind, to activate active
memory for the first time you need to modify the LPAR’s partition profile and reactivate the
LPAR. The AME expansion factor can be dynamically modified after this step.

Figure 3-8 demonstrates how to enable active memory expansion with a starting expansion
factor of 1.4. This means that there will be 8 GB of real memory, multiplied by 1.4 resulting in
AIX seeing a total of 11.2 GB of expanded memory.

Figure 3-8 Enabling AME in the LPAR profile

Once the LPAR is re-activated, confirm that the settings took effect by running the
lparstat -i command. This is shown in Example 3-5.

Example 3-5 Running lparstat -i

root@aix1:/ # lparstat -i
Node Name : aix1
Partition Name : 750_2_AIX1
Partition Number : 20
Type : Shared-SMT-4
Mode : Uncapped
Entitled Capacity : 2.00
Chapter 3. IBM Power Systems virtualization 57

Partition Group-ID : 32788
Shared Pool ID : 0
Online Virtual CPUs : 4
Maximum Virtual CPUs : 8
Minimum Virtual CPUs : 1
Online Memory : 8192 MB
Maximum Memory : 16384 MB
Minimum Memory : 4096 MB
Variable Capacity Weight : 128
Minimum Capacity : 0.50
Maximum Capacity : 8.00
Capacity Increment : 0.01
Maximum Physical CPUs in system : 16
Active Physical CPUs in system : 16
Active CPUs in Pool : 16
Shared Physical CPUs in system : 16
Maximum Capacity of Pool : 1600
Entitled Capacity of Pool : 1000
Unallocated Capacity : 0.00
Physical CPU Percentage : 50.00%
Unallocated Weight : 0
Memory Mode : Dedicated-Expanded
Total I/O Memory Entitlement : -
Variable Memory Capacity Weight : -
Memory Pool ID : -
Physical Memory in the Pool : -
Hypervisor Page Size : -
Unallocated Variable Memory Capacity Weight: -
Unallocated I/O Memory entitlement : -
Memory Group ID of LPAR : -
Desired Virtual CPUs : 4
Desired Memory : 8192 MB
Desired Variable Capacity Weight : 128
Desired Capacity : 2.00
Target Memory Expansion Factor : 1.25
Target Memory Expansion Size : 10240 MB
Power Saving Mode : Disabled
root@aix1:/ #

The output of Example 3-5 on page 57 tells the following:

� The memory mode is Dedicated-Expanded. This means that we are not using Active
Memory Sharing (AMS), but we are using Active Memory Expansion (AME).

� The desired memory is 8192 MB. This is the true memory allocated to the LPAR.

� The AME expansion factor is 1.25.

� The size of the expanded memory pool is 10240 MB.

Once AME is activated, the workload may change, so it is suggested to run amepat regularly
to see if the optimal expansion factor is currently set based on the amepat tool’s
recommendation. Example 3-6 shows a portion of the amepat output with the amepat tool’s
recommendation being 1.38.

Example 3-6 Running amepat after AME is enabled for comparison

Expansion Modeled True Modeled CPU Usage
58 IBM Power Systems Performance Guide: Implementing and Optimizing

Factor Memory Size Memory Gain Estimate
--------- ------------- ------------------ -----------
 1.25 8.00 GB 2.00 GB [25%] 0.00 [0%] << CURRENT CONFIG
 1.30 7.75 GB 2.25 GB [29%] 0.00 [0%]
 1.38 7.25 GB 2.75 GB [38%] 0.38 [10%]
 1.49 6.75 GB 3.25 GB [48%] 1.15 [29%]
 1.54 6.50 GB 3.50 GB [54%] 1.53 [38%]
 1.67 6.00 GB 4.00 GB [67%] 2.29 [57%]
 1.74 5.75 GB 4.25 GB [74%] 2.68 [67%]
 1.82 5.50 GB 4.50 GB [82%] 3.01 [75%]
 2.00 5.00 GB 5.00 GB [100%] 3.01 [75%]

To change the AME expansion factor once AME is enabled, this can be done by simply
reducing the amount of true memory and increasing the expansion factor using Dynamic
Logical Partitioning (DLPAR).

Figure 3-9 demonstrates changing the AME expansion factor to 1.38 and reducing the
amount of real memory to 7.25 GB.

Figure 3-9 Dynamically modify the expansion factor and true memory

After the change, you can now see the memory configuration using the lparstat -i
command as demonstrated in Example 3-5 on page 57. The lsattr and vmstat commands
can also be used to display this information. This is shown in Example 3-7 on page 60.
Chapter 3. IBM Power Systems virtualization 59

Example 3-7 Using lsattr and vmstat to display memory size

root@aix1:/ # lsattr -El mem0
ent_mem_cap I/O memory entitlement in Kbytes False
goodsize 7424 Amount of usable physical memory in Mbytes False
mem_exp_factor 1.38 Memory expansion factor False
size 7424 Total amount of physical memory in Mbytes False
var_mem_weight Variable memory capacity weight False
root@aix1:/ # vmstat |grep 'System configuration'
System configuration: lcpu=16 mem=10240MB ent=2.00
root@aix1:/ #

You can see that the true memory is 7424 MB, the expansion factor is 1.38, and the expanded
memory pool size is 10240 MB.

3.2.5 Tunables

There are a number of tunables that can be modified using AME. Typically, the default values
are suitable for most workloads, and these tunables should only be modified under the
guidance of IBM support. The only value that would need to be tuned is the AME expansion
factor.

Table 3-6 AME tunables

Note: Additional information about AME usage can be found at:

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/pow03037usen/POW03037USEN.PDF

Tunable Description

ame_minfree_mem If processes are being delayed waiting for compressed
memory to become available, increase ame_minfree_mem to
improve response time. Note that the value use for
ame_minfree_mem must be at least 257 kb less than
ame_maxfree_mem.

ame_maxfree_mem Excessive shrink and grow operations can occur if
compressed memory pool size tends to change
significantly. This can occur if a workload's working set size
frequently changes. Increase this tunable to raise the
threshold at which the VMM will shrink a compressed
memory pool and thus reduce the number of overall shrink
and grow operations.

ame_cpus_per_pool Lower ratios can be used to reduce contention on
compressed memory pools. This ratio is not the only factor
used to determine the number of compressed memory
pools (amount of memory and its layout are also
considered), so certain changes to this ratio may not result
in any change to the number of compressed memory pools.

ame_min_ucpool_size If the compressed memory pool grows too large, there may
not be enough space in memory to house uncompressed
memory, which can slow down application performance
due to excessive use of the compressed memory pool.
Increase this value to limit the size of the compressed
memory pool and make more uncompressed pages
available.
60 IBM Power Systems Performance Guide: Implementing and Optimizing

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/pow03037usen/POW03037USEN.PDF

Example 3-8 shows the default and possible values for each of the AME vmo tunables.

Example 3-8 AME tunables

root@aix1:/ # vmo -L ame_minfree_mem
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
ame_minfree_mem n/a 8M 8M 64K 4095M bytes D
 ame_maxfree_mem
--
root@aix1:/ # vmo -L ame_maxfree_mem
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
ame_maxfree_mem n/a 24M 24M 320K 4G bytes D
 ame_minfree_mem
--
root@aix1:/ # vmo -L ame_cpus_per_pool
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
ame_cpus_per_pool n/a 8 8 1 1K processors B
--
root@aix1:/ # vmo -L ame_min_ucpool_size
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
ame_min_ucpool_size n/a 0 0 5 95 % memory D
--
root@aix1:/ #

3.2.6 Monitoring

When using active memory expansion, in addition to monitoring the processor usage of AME,
it is also important to monitor paging space and memory deficit. Memory deficit is the amount
of memory that cannot fit into the compressed pool as a result of AME not being able to reach
the target expansion factor. This is caused by the expansion factor being set too high.

The lparstat -c command can be used to display specific information related to AME. This
is shown in Example 3-9.

Example 3-9 Running lparstat -c

root@aix1:/ # lparstat -c 5 5

System configuration: type=Shared mode=Uncapped mmode=Ded-E smt=4 lcpu=64 mem=14336MB
tmem=8192MB psize=7 ent=2.00

%user %sys %wait %idle physc %entc lbusy app vcsw phint %xcpu xphysc dxm
----- ----- ------ ------ ----- ----- ------ --- ----- ----- ------ ------ ------
 66.3 13.4 8.8 11.5 5.10 255.1 19.9 0.00 18716 6078 1.3 0.0688 0
 68.5 12.7 10.7 8.0 4.91 245.5 18.7 0.00 17233 6666 2.3 0.1142 0
 69.7 13.2 13.1 4.1 4.59 229.5 16.2 0.00 15962 8267 1.0 0.0481 0
 73.8 14.7 9.2 2.3 4.03 201.7 34.6 0.00 19905 5135 0.5 0.0206 0
 73.5 15.9 7.9 2.8 4.09 204.6 28.7 0.00 20866 5808 0.3 0.0138 0
Chapter 3. IBM Power Systems virtualization 61

root@aix1:/ #

The items of interest in the lparstat -c output are the following:

mmode This is how the memory of our LPAR is configured. In this case Ded-E means the
memory is dedicated, meaning AMS is not active, and AME is enabled.

mem This is the expanded memory size.

tmem This is the true memory size.

physc This is how many physical processor cores our LPAR is consuming.

%xcpu This is the percentage of the overall processor usage that AME is consuming.

xphysc This is the amount of physical processor cores that AME is consuming.

dxm This is the memory deficit, which is the number of 4 k pages that cannot fit into the
expanded memory pool. If this number is greater than zero, it is likely that the
expansion factor is too high, and paging activity will be present on the AIX system.

The vmstat -sc command also provides some information specific to AME. One is the
amount of compressed pool pagein and pageout activity. This is important to check because it
could be a sign of memory deficit and the expansion factor being set too high. Example 3-10
gives a demonstration of running the vmstat -sc command.

Example 3-10 Running vmstat -sc

root@aix1:/ # vmstat -sc
 5030471 total address trans. faults
 72972 page ins
 24093 page outs
 0 paging space page ins
 0 paging space page outs
 0 total reclaims
 3142095 zero filled pages faults
 66304 executable filled pages faults
 0 pages examined by clock
 0 revolutions of the clock hand
 0 pages freed by the clock
 132320 backtracks
 0 free frame waits
 0 extend XPT waits
 23331 pending I/O waits
 97065 start I/Os
 42771 iodones
 88835665 cpu context switches
 253502 device interrupts
 4793806 software interrupts
 92808260 decrementer interrupts
 68395 mpc-sent interrupts
 68395 mpc-receive interrupts
 528426 phantom interrupts
 0 traps
 85759689 syscalls
 0 compressed pool page ins
 0 compressed pool page outs
root@aix1:/ #
62 IBM Power Systems Performance Guide: Implementing and Optimizing

The vmstat -vc command also provides some information specific to AME. This command
displays information related to the size of the compressed pool and an indication whether
AME is able to achieve the expansion factor that has been set. Items of interest include the
following:

� Compressed pool size

� Percentage of true memory used for the compressed pool

� Free pages in the compressed pool (this is the mount of 4 k pages)

� Target AME expansion factor

� The AME expansion factor that is currently being achieved

Example 3-11 demonstrates running the vmstat -vc command.

Example 3-11 Running vmstat -vc

root@aix1:/ # vmstat -vc
 3670016 memory pages
 1879459 lruable pages
 880769 free pages
 8 memory pools
 521245 pinned pages
 95.0 maxpin percentage
 3.0 minperm percentage
 80.0 maxperm percentage
 1.8 numperm percentage
 33976 file pages
 0.0 compressed percentage
 0 compressed pages
 1.8 numclient percentage
 80.0 maxclient percentage
 33976 client pages
 0 remote pageouts scheduled
 0 pending disk I/Os blocked with no pbuf
 1749365 paging space I/Os blocked with no psbuf
 1972 filesystem I/Os blocked with no fsbuf
 1278 client filesystem I/Os blocked with no fsbuf
 0 external pager filesystem I/Os blocked with no fsbuf
 500963 Compressed Pool Size
 23.9 percentage of true memory used for compressed pool
 61759 free pages in compressed pool (4K pages)
 1.8 target memory expansion factor
 1.8 achieved memory expansion factor
 75.1 percentage of memory used for computational pages
root@aix1:/ #

3.2.7 Oracle batch scenario

We performed a test on an Oracle batch workload to determine the memory saving benefit of
AME. The LPAR started with 120 GB of memory assigned and 24 virtual processors (VP)
allocated.

Note: Additional information about AME performance can be found at:

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/pow03038usen/POW03038USEN.PDF
Chapter 3. IBM Power Systems virtualization 63

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/pow03038usen/POW03038USEN.PDF

Over the course of three tests, we increased the AME expansion factor and reduced the
amount of memory with the same workload.

Figure 3-10 provides an overview of the three tests carried out.

Figure 3-10 AME test on an Oracle batch workload

On completion of the tests, the first batch run completed in 124 minutes. The batch time grew
slightly on the following two tests. However, the amount of true memory allocated was
significantly reduced.

Table 3-7 provides a summary of the test results.

Table 3-7 Oracle batch test results

3.2.8 Oracle OLTP scenario

We performed a test on an Oracle OLTP workload in a scenario where the free memory on
the LPAR with 100 users is less than 1%. By enabling active memory expansion we tested
keeping the real memory the same, and increasing the expanded memory pool with active
memory expansion to enable the LPAR to support additional users.

The objective of the test was to increase the number of users and TPS without affecting the
application’s response time.

Test run Processor Memory assigned Runtime Avg. processor

Test 0 24 120 GB (AME disabled) 124 Mins 16.3

Test 1 24 60 GB (AME expansion 2.00) 127 Mins 16.8

Test 2 24 40 GB (AME expansion 3.00) 134 Mins 17.5

Conclusion: The impact of AME on batch duration is less than 10% with a processor
overhead of 7% with three times less memory.

Memory Configuration

100%

50%

33%

Mem Size: 120GB
AME Factor 1.00 (disabled)

Mem Size: 60GB
AME Factor 2.00 (enabled)

Mem Size: 40GB
AME Factor 3.00 (enabled)

Test 0 - Baseline

Test 1 – 200%

Test 2 – 300%

50%

66%
64 IBM Power Systems Performance Guide: Implementing and Optimizing

Three tests were performed, first with AME turned off, the second with an expansion factor of
1.25 providing 25% additional memory as a result of compression, and a test with an
expansion factor of 1.6 to provide 60% of additional memory as a result of compression. The
amount of true memory assigned to the LPAR remained at 8 GB during all three tests.

Figure 3-11 provides an overview of the three tests.

Figure 3-11 AME test on an Oracle OLTP workload

In the test, our LPAR had 8 GB of real memory and the Oracle SGA was sized at 5 GB.

With 100 concurrent users and no AME enabled, the 8 GB of assigned memory was 99%
consumed. When the AME expansion factor was modified to 1.25 the amount of users
supported was 300, with 0.1 processor cores consumed by AME overhead.

At this point of the test, we ran the amepat tool to identify the recommendation of amepat for
our workload. Example 3-12 shows a subset of the amepat report, where our current
expansion factor is 1.25 and the recommendation from amepat was a 1.54 expansion factor.

Example 3-12 Output of amepat during test 1

Expansion Modeled True Modeled CPU Usage
Factor Memory Size Memory Gain Estimate
--------- ------------- ------------------ -----------
 1.03 9.75 GB 256.00 MB [3%] 0.00 [0%]
 1.18 8.50 GB 1.50 GB [18%] 0.00 [0%]
 1.25 8.00 GB 2.00 GB [25%] 0.01 [0%] << CURRENT CONFIG
 1.34 7.50 GB 2.50 GB [33%] 0.98 [6%]
 1.54 6.50 GB 3.50 GB [54%] 2.25 [14%]
 1.67 6.00 GB 4.00 GB [67%] 2.88 [18%]
 1.82 5.50 GB 4.50 GB [82%] 3.51 [22%]
 2.00 5.00 GB 5.00 GB [100%] 3.74 [23%]

Memory Configuration

100%

125%

160%

True Mem Size: 8 GB
AME Factor 1.00 (disabled)

True Mem Size: 8 GB
Expanded Mem Size: 10 GB
AME Factor 1.25 (enabled)

True Mem Size: 8 GB
Expanded Mem Size: 14 GB
AME Factor 1.60 (enabled)

Test 0 - Baseline

Test 1 – 125%

Test 2 – 160%
Chapter 3. IBM Power Systems virtualization 65

It is important to note that the amepat tool’s objective is to reduce the amount of real memory
assigned to the LPAR by using compression based on the expansion factor. This explains the
2.25 processor overhead estimate of amepat being more than the 1.65 actual processor
overhead that we experienced because we did not change our true memory.

Table 3-8 provides a summary of our test results.

Table 3-8 OLTP results

3.2.9 Using amepat to suggest the correct LPAR size

During our testing with AME we observed cases where the recommendations by the amepat
tool could be biased by incorrect LPAR size. We found that if the memory allocated to an
LPAR far exceeded the amount consumed by the running workload, then the ratio suggested
by amepat would actually be unrealistic. Such cases of concern become apparent when
running through iterations of amepat—a suggested ratio will keep contradicting the previous
result.

To illustrate this point, Example 3-13 lists a portion from the amepat output from a 5-minute
sample of an LPAR running a WebSphere Message Broker workload. The LPAR was
configured with 8 GB of memory.

Example 3-13 Initial amepat iteration for an 8 GB LPAR

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 1.00 GB and to configure a memory expansion factor
of 8.00. This will result in a memory gain of 700%. With this
configuration, the estimated CPU usage due to AME is approximately 0.21
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 2.50 physical processors.

The LPAR was configured with 8 GB of memory and with an AME expansion ratio of 1.0. The
LPAR was reconfigured based on the recommendation and reactivated to apply the change.
The workload was restarted and amepat took another 5-minute sample. Example 3-14 lists
the second recommendation.

Example 3-14 Second amepat iteration

WARNING: This LPAR currently has a memory deficit of 6239 MB.
A memory deficit is caused by a memory expansion factor that is too
high for the current workload. It is recommended that you reconfigure
the LPAR to eliminate this memory deficit. Reconfiguring the LPAR
with one of the recommended configurations in the above table should

Test run Processor Memory assigned TPS No of users Avg CPU

Test 0 VP = 16 8 GB (AME disabled) 325 100 1.7 (AME=0)

Test 1 VP = 16 8 GB (AME expansion
1.25)

990 300 4.3 (AME=0.10)

Test 2 VP = 16 8 GB (AME expansion
1.60)

1620 500 7.5 (AME=1.65)

Conclusion: The impact of AME on our Oracle OLTP workload enabled our AIX LPAR to
have 5 times more users and 5 times more TPS with the same memory footprint.
66 IBM Power Systems Performance Guide: Implementing and Optimizing

eliminate this memory deficit.

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 3.50 GB and to configure a memory expansion factor
of 2.29. This will result in a memory gain of 129%. With this
configuration, the estimated CPU usage due to AME is approximately 0.00
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 2.25 physical processors.

The LPAR was once again reconfigured, reactivated, and the process repeated.
Example 3-15 shows the third recommendation.

Example 3-15 Third amepat iteration

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 1.00 GB and to configure a memory expansion factor
of 8.00. This will result in a memory gain of 700%. With this
configuration, the estimated CPU usage due to AME is approximately 0.25
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 2.54 physical processors.

We stopped this particular test cycle at this point. The LPAR was reconfigured to have 8 GB
dedicated; the active memory expansion factor checkbox was unticked. The first amepat
recommendation was now something more realistic, as shown in Example 3-16.

Example 3-16 First amepat iteration for the second test cycle

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 4.50 GB and to configure a memory expansion factor
of 1.78. This will result in a memory gain of 78%. With this
configuration, the estimated CPU usage due to AME is approximately 0.00
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 2.28 physical processors.

However, reconfiguring the LPAR and repeating the process produced a familiar result, as
shown in Example 3-17.

Example 3-17 Second amepat iteration for second test cycle

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 1.00 GB and to configure a memory expansion factor
of 8.00. This will result in a memory gain of 700%. With this
configuration, the estimated CPU usage due to AME is approximately 0.28
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 2.56 physical processors.

The Message Broker workload being used had been intentionally configured to provide a
small footprint; this was to provide an amount of load on the LPAR without being excessively
demanding on processor or RAM. We reviewed the other sections in the amepat reports to
see if there was anything to suggest why the recommendations were unbalanced.

Since the LPAR was originally configured with 8 GB of RAM, all the AME projections were
based on that goal. However, from reviewing all the reports, we saw that the amount of RAM
being consumed by the workload was not using near the 8 GB. The System Resource
Statistics section details memory usage during the sample period. Example 3-18 on page 68
lists the details from the initial report, which was stated in part in Example 3-13 on page 66.
Chapter 3. IBM Power Systems virtualization 67

Example 3-18 Average system resource statistics from initial amepat iteration

System Resource Statistics: Average
--------------------------- -----------
CPU Util (Phys. Processors) 1.82 [46%]
Virtual Memory Size (MB) 2501 [31%]
True Memory In-Use (MB) 2841 [35%]
Pinned Memory (MB) 1097 [13%]
File Cache Size (MB) 319 [4%]
Available Memory (MB) 5432 [66%]

From Example 3-18 we can conclude that only around a third of the allocated RAM is being
consumed. However, in extreme examples where the LPAR was configured to have less than
2 GB of actual RAM, this allocation was too small for the workload to be healthily contained.

Taking the usage profile into consideration, the LPAR was reconfigured to have 4 GB of
dedicated RAM (no AME). The initial amepat recommendations were now more realistic
(Example 3-19).

Example 3-19 Initial amepat results for a 4-GB LPAR

System Resource Statistics: Average
--------------------------- -----------
CPU Util (Phys. Processors) 1.84 [46%]
Virtual Memory Size (MB) 2290 [56%]
True Memory In-Use (MB) 2705 [66%]
Pinned Memory (MB) 1096 [27%]
File Cache Size (MB) 392 [10%]
Available Memory (MB) 1658 [40%]

Active Memory Expansion Recommendation:

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 2.50 GB and to configure a memory expansion factor
of 1.60. This will result in a memory gain of 60%. With this
configuration, the estimated CPU usage due to AME is approximately 0.00
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 2.28 physical processors.

So the recommendation of 2.5 GB is still larger than the quantity actually consumed. But the
amount of free memory is much more reasonable. Reconfiguring the LPAR and repeating the
process now produced more productive results. Example 3-20 lists the expansion factor
which amepat settled on.

Example 3-20 Final amepat recommendation for a 4-GB LPAR

Active Memory Expansion Recommendation:

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 2.00 GB and to configure a memory expansion factor
of 1.50. This will result in a memory gain of 50%. With this
configuration, the estimated CPU usage due to AME is approximately 0.13
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 2.43 physical processors.
68 IBM Power Systems Performance Guide: Implementing and Optimizing

3.2.10 Expectations of AME

When considering AME and using amepat, remember to take into consideration what data is
used to calculate any recommendations:

� Memory size (allocated to LPAR)
� Memory usage
� Type of data stored in memory
� Processor usage

However, amepat has no concept of understanding of application throughput or time
sensitivity. The recommendations aim to provide the optimal use of memory allocation at the
expense of some processor cycles. amepat cannot base recommendations on optimal
application performance, because it has no way to interpret such an attribute from AIX.

In the scenario discussed in 3.2.9, “Using amepat to suggest the correct LPAR size” on
page 66, the concluding stable recommendation provided 96% of the application throughput
of the original 4 GB dedicated configuration. However, an intermediate recommendation
actually produced 101%, whereas the scenario discussed in 3.2.8, “Oracle OLTP scenario”
on page 64 resulted in more throughput with the same footprint.

Different workloads will produce different results, both in terms of resource efficiency and
application performance. Our previous sections illustrate some of the implications, which can
be used to set expectations for your own workloads based on your requirements.

3.3 Active Memory Sharing (AMS)

Active Memory Sharing is a feature of Power systems that allows better memory utilization,
similar to Shared Processor Partition (SPLPAR) processor optimization. Similar to what
occurs with processors, instead of dedicating memory to partitions, the memory can be
assigned as shared. The PowerVM hypervisor manages real memory across multiple
AMS-enabled partitions, distributing memory from Share Memory Pool to partitions based on
their workload demand.

AMS requirements:

� Enterprise version of PowerVM
� POWER6 AIX 6.1 TL 3 or later, VIOS 2.1.0.1-FP21
� POWER7 AIX 6.1 TL 4 or later, VIOS 2.1.3.10-FP23

For additional information about Active Memory Sharing, refer to IBM PowerVM Virtualization
Active Memory Sharing, REDP-4470 at:

http://www.redbooks.ibm.com/redpapers/pdfs/redp4470.pdf

Note: Once the LPAR has been configured to the size shown in Example 3-20 on page 68,
the amepat recommendations were consistent for additional iterations. So if successive
iterations with the amepat recommendations contradict themselves, we suggest reviewing
the size of your LPAR.
Chapter 3. IBM Power Systems virtualization 69

http://www.redbooks.ibm.com/redpapers/pdfs/redp4470.pdf

3.4 Active Memory Deduplication (AMD)

A system might have a considerable amount of duplicated information stored on its memory.
Active Memory Deduplication allows the PowerVM hypervisor to dynamically map identical
partition memory pages to a single physical memory page. AMD depends on the Active
Memory Sharing (AMS) feature to be available, and relies on processor cycles to identify
duplicated pages with hints taken directly from the operating system.

The Active Memory Deduplication feature requires the following minimum components:

� POWER7
� PowerVM Enterprise edition
� System firmware level 740
� AIX Version 6: AIX 6.1 TL7, or later
� AIX Version 7: AIX 7.1 TL1 SP1, or later

For more information about Active Memory Sharing, refer to:

http://www.redbooks.ibm.com/redpapers/pdfs/redp4827.pdf

3.5 Virtual I/O Server (VIOS) sizing

In this section we highlight some suggested sizing guidelines and tools to ensure that a VIOS
on a POWER7 system is allocated adequate resources to deliver optimal performance.

It is essential to continually monitor the resource utilization of the VIOS and review the
hardware assignments as workloads change.

3.5.1 VIOS processor assignment

The VIOS uses processor cycles to deliver I/O to client logical partitions. This includes
running the VIO server’s own instance of the AIX operating system, and processing shared
Ethernet traffic as well as shared disk I/O traffic including virtual SCSI and N-Port
Virtualization (NPIV).

Typically SEAs backed by 10 Gb physical adapters in particular consume a large amount of
processor resources on the VIOS depending on the workload. High-speed 8 Gb Fibre
Channel adapters in environments with a heavy disk I/O workload also consume large
amounts of processor cycles.

In most cases, to provide maximum flexibility and performance capability, it is suggested that
you configure the VIOS partition taking the settings into consideration described in Table 3-9.

Table 3-9 Suggested Virtual I/O Server processor settings

Setting Suggestion

Processing mode There are two options for the processing, shared or dedicated. In
most cases the suggestion is to use shared to take advantage of
PowerVM and enable the VIOS to take advantage of additional
processor capacity during peak workloads.
70 IBM Power Systems Performance Guide: Implementing and Optimizing

http://www.redbooks.ibm.com/redpapers/pdfs/redp4827.pdf

Processor folding at the time of writing is not supported for VIOS partitions. When a VIOS is
configured as uncapped, virtual processors that are not in use are “folded” to ensure that they
are available for use by other logical partitions.

It is important to ensure that the entitled capacity and virtual processor are sized
appropriately on the VIOS partition to ensure that there are no wasted processor cycles on
the system.

When VIOS is installed from a base of 2.1.0.13-FP23 or later, processor folding is already
disabled by default. If the VIOS has been upgraded or migrated from an older version, then
processor folding may remain enabled.

The schedo command can be used to query whether processor folding is enabled, as shown
in Example 3-21.

Example 3-21 How to check whether processor folding is enabled

$ oem_setup_env
schedo -o vpm_fold_policy
vpm_fold_policy = 3

If the value is anything other than 4, then processor folding needs to be disabled.

Processor folding is discussed in 4.1.3, “Processor folding” on page 123.

Example 3-22 demonstrates how to disable processor folding. This change is dynamic, so
that no reboot of the VIOS LPAR is required.

Example 3-22 How to disable processor folding

$ oem_setup_env
schedo -p -o vpm_fold_policy=4

Entitled capacity The entitled capacity is ideally set to the average processing
units that the VIOS partition is using. If your VIOS is constantly
consuming beyond 100% of the entitled capacity, the suggestion
is to increase the capacity entitlement to match the average
consumption.

Desired virtual processors The virtual processors should be set to the number of cores with
some headroom that the VIOS will consume during peak
workload.

Sharing mode The suggested sharing mode is uncapped. This enables the
VIOS partition to consume additional processor cycles from the
shared pool when it is under load.

Weight The VIOS partition is sensitive to processor allocation. When the
VIOS is starved of resources, all virtual client logical partitions
will be affected. The VIOS typically should have a higher weight
than all of the other logical partitions in the system. The weight
ranges from 0-255; the suggested value for the Virtual I/O server
would be in the upper part of the range.

Processor compatibility mode The suggested compatibility mode to configure in the VIOS
partition profile to use the default setting. This allows the LPAR to
run in whichever mode is best suited for the level of VIOS code
installed.

Setting Suggestion
Chapter 3. IBM Power Systems virtualization 71

Setting vpm_fold_policy to 4 in nextboot file
Setting vpm_fold_policy to 4

3.5.2 VIOS memory assignment

The VIOS also has some specific memory requirements, which need to be monitored to
ensure that the LPAR has sufficient memory.

The VIOS Performance Advisor, which is covered in 5.9, “VIOS performance advisor tool and
the part command” on page 271, provides recommendations regarding sizing and
configuration of a running VIOS.

However, for earlier VIOS releases or as a starting point, the following guidelines can be used
to estimate the required memory to assign to a VIOS LPAR:

� 2 GB of memory for every 16 processor cores in the machine. For most VIOS this should
be a workable base to start from.

� For more complex implementations, start with a minimum allocation of 768 MB. Then add
increments based on the quantities of the following adapters:

– For each Logical Host Ethernet Adapter (LHEA) add 512 MB, and an additional 102
MB per configured port.

– For each non-LHEA 1 Gb Ethernet port add 102 MB.

– For each non-LHEA 10 Gb port add 512 MB.

– For each 8 Gb Fibre Channel adapter port add 512 MB.

– For each NPIV Virtual Fibre Channel adapter add 140 MB.

– For each Virtual Ethernet adapter add 16 MB.

In the cases above, even if a given adapter is idle or not yet assigned to an LPAR (in the case
of NPIV), still base your sizing on the intended scaling.

3.5.3 Number of VIOS

Depending on your environment, the number of VIOS on your POWER7 system will vary.
There are cases where due to hardware constraints only a single VIOS can be deployed,
such non-HMC-managed systems using Integrated Virtualization Manager (IVM).

As a general best practice, it is ideal to deploy Virtual I/O servers in redundant pairs. This
enables both additional availability and performance for the logical partitions using virtualized
I/O. The first benefit this provides is the ability to be able to shut down one of the VIOS for
maintenance; the second VIOS will be available to serve I/O to client logical partitions. This
also caters for a situation where there may be an unexpected outage on a single VIOS and
the second VIOS can continue to serve I/O and keep the client logical partitions running.

Configuring VIOS in this manner is covered in IBM PowerVM Virtualization Introduction and
Configuration, SG24-7940-04.

Note: With version V7R7.6.0.0 and later, an HMC can be used to manage POWER
processor-based blades.
72 IBM Power Systems Performance Guide: Implementing and Optimizing

In most cases, a POWER7 system has a single pair of VIOS. However, there may be
situations where a second or even third pair may be required. In most situations, a single pair
of VIO servers is sufficient.

Following are some situations where additional pairs of Virtual I/O servers may be a
consideration on larger machines where there are additional resources available:

� Due to heavy workload, a pair of VIOS may be deployed for shared Ethernet and a second
pair may be deployed for disk I/O using a combination of N-Port Virtualization (NPIV),
Virtual SCSI, or shared storage pools (SSP).

� Due to different types of workloads, there may be a pair of VIOS deployed for each type of
workload, to cater to multitenancy situations or situations where workloads must be totally
separated by policy.

� There may be production and nonproduction LPARs on a single POWER7 frame with a
pair of VIOS for production and a second pair for nonproduction. This would enable both
workload separation and the ability to test applying fixes in the nonproduction pair of VIOS
before applying them to the production pair. Obviously, where a single pair of VIOS are
deployed, they can still be updated one at a time.

3.5.4 VIOS updates and drivers

On a regular basis, new enhancements and fixes are added to the VIOS code. It is important
to ensure that your Virtual I/O servers are kept up to date. It is also important to check your
IOS level and update it regularly. Example 3-23 demonstrates how to check the VIOS level.

Example 3-23 How to check your VIOS level

$ ioslevel
2.2.2.0
$

For optimal disk performance, it is also important to install the AIX device driver for your disk
storage system on the VIOS. Example 3-24 illustrates where the storage device drivers are
not installed. In this case AIX uses a generic device definition because the correct definition
for the disk is not defined in the ODM.

Example 3-24 VIOS without correct device drivers installed

$ lsdev -type disk
name status description
hdisk0 Available MPIO Other FC SCSI Disk Drive
hdisk1 Available MPIO Other FC SCSI Disk Drive
hdisk2 Available MPIO Other FC SCSI Disk Drive
hdisk3 Available MPIO Other FC SCSI Disk Drive
hdisk4 Available MPIO Other FC SCSI Disk Drive
hdisk5 Available MPIO Other FC SCSI Disk Drive
$

In this case, the correct device driver needs to be installed to optimize how AIX handles I/O
on the disk device. These drivers would include SDDPCM for IBM DS6000™, DS8000®,

Note: Typically a single pair of VIOS per Power system will be sufficient, so long as the pair
is provided with sufficient processor, memory, and I/O resources.
Chapter 3. IBM Power Systems virtualization 73

V7000 and SAN Volume Controller. For other third-party storage systems, the device drivers
can be obtained from the storage vendor such as HDLM for Hitachi or PowerPath for EMC.

Example 3-25 demonstrates verification of the SDDPCM fileset being installed for IBM SAN
Volume Controller LUNs, and verification that the ODM definition for the disks is correct.

Example 3-25 Virtual I/O server with SDDPCM driver installed

$ oem_setup_env
lslpp -l devices.fcp.disk.ibm.mpio.rte
 Fileset Level State Description
 --
Path: /usr/lib/objrepos
 devices.fcp.disk.ibm.mpio.rte
 1.0.0.23 COMMITTED IBM MPIO FCP Disk Device
lslpp -l devices.sddpcm*
 Fileset Level State Description
 --
Path: /usr/lib/objrepos
 devices.sddpcm.61.rte 2.6.3.0 COMMITTED IBM SDD PCM for AIX V61

Path: /etc/objrepos
 devices.sddpcm.61.rte 2.6.3.0 COMMITTED IBM SDD PCM for AIX V61
exit
$ lsdev -type disk
name status description
hdisk0 Available MPIO FC 2145
hdisk1 Available MPIO FC 2145
hdisk2 Available MPIO FC 2145
hdisk3 Available MPIO FC 2145
hdisk4 Available MPIO FC 2145
hdisk5 Available MPIO FC 2145
$

3.6 Using Virtual SCSI, Shared Storage Pools and N-Port
Virtualization

PowerVM and VIOS provide the capability to share physical resources among multiple logical
partitions to provide efficient utilization of the physical resource. From a disk I/O perspective,
different methods are available to implement this.

In this section, we provide a brief overview and comparison of the different I/O device
virtualizations available in PowerVM. The topics covered in this section are as follows:

� Virtual SCSI

� Virtual SCSI using Shared Storage Pools

� N_Port Virtualization (NPIV)

Note: IBM System Storage® device drivers are free to download for your IBM Storage
System. Third-party vendors may supply device drivers at an additional charge.
74 IBM Power Systems Performance Guide: Implementing and Optimizing

Note that Live Partition Mobility (LPM) is supported on all three implementations and in
situations that require it, combinations of these technologies can be deployed together,
virtualizing different devices on the same machine.

3.6.1 Virtual SCSI

Virtual SCSI describes the implementation of mapping devices allocated to one or more VIOS
using the SCSI protocol to a client logical partition. Any device drivers required for the device
such as a LUN are installed on the Virtual I/O server, and the client logical partition sees a
generic virtual SCSI device.

In POWER5, this was the only way to share disk storage devices using VIO and is still
commonly used in POWER6 and POWER7 environments.

The following are the advantages and performance considerations related to the use of
Virtual SCSI:

Advantages
These are the advantages of using Virtual SCSI:

� It enables file-backed optical devices to be presented to a client logical partition as a
virtual CDROM. This is mounting an ISO image residing on the VIO server to the client
logical partition as a virtual CDROM.

� It does not require specific FC adapters or fabric switch configuration.

� It can virtualize internal disk.

� It provides the capability to map disk from a storage device not capable of a 520-byte
format to an IBM i LPAR as supported generic SCSI disk.

� It does not require any disk device drivers to be installed on the client logical partitions,
only the Virtual I/O server requires disk device drivers.

Performance considerations
The performance considerations of using Virtual SCSI are:

� Disk device and adapter tuning are required on both the VIO server and the client logical
partition. If a tunable is set in VIO and not in AIX, there may be a significant performance
penalty.

� When multiple VIO servers are in use, I/O cannot be load balanced between all VIO
servers. A virtual SCSI disk can only be performing I/O operations on a single VIO server.

� If virtual SCSI CDROM devices are mapped to a client logical partition, all devices on that
VSCSI adapter must use a block size of 256 kb (0x40000).

Figure 3-12 on page 76 describes a basic Virtual SCSI implementation consisting of four AIX
LPARs and two VIOS. The process to present a storage Logical Unit (LUN) to the LPAR as a
virtual disk is as follows:

1. Assign the storage LUN to both VIO servers and detect them using cfgdev.

2. Apply any tunables such as the queue depth and maximum transfer size on both VIOS.

3. Set the LUN’s reserve policy to no_reserve to enable I/O to enable both VIOS to map the
device.

Note: This section does not cover in detail how to tune disk and adapter devices in each
scenario. This is covered in 4.3, “I/O device tuning” on page 140.
Chapter 3. IBM Power Systems virtualization 75

4. Map the device to the desired client LPAR.

5. Configure the device in AIX using cfgmgr and apply the same tunables as defined on the
VIOS such as queue depth and maximum transfer size.

Figure 3-12 Virtual SCSI (VSCSI) overview

3.6.2 Shared storage pools

Shared storage pools are built on the virtual SCSI provisioning method, with the exception
that the VIOS are added to a cluster, with one or more external disk devices (LUNs) assigned
to the VIOS participating in the cluster. The LUNs assigned to the cluster must have some
backend RAID for availability. Shared storage pools have been available since VIOS 2.2.1.3.

A shared storage pool is then created from the disks assigned to the cluster of VIO servers,
and from there virtual disks can be provisioned from the pool.

Shared storage pools are ideal for situations where the overhead of SAN administration
needs to be reduced for Power systems, and large volumes from SAN storage can simply be
allocated to all the VIO servers. From there the administrator of the Power system can
perform provisioning tasks to individual LPARs.

Shared storage pools also have thin provisioning and snapshot capabilities, which also may
add benefit if you do not have these capabilities on your external storage system.

Note: This section does not cover how to configure Virtual SCSI. For details on the
configuration steps, refer to IBM PowerVM Virtualization Introduction and Configuration,
SG24-7590-03.

AIX LPAR #1

vh
ost0

AIX LPAR #2 AIX LPAR #3 AIX LPAR #4

vscsi1

vscsi0

vscsi1

vscsi0

vscsi1

vscsi0

vscsi1

vscsi0

vh
ost1

vh
ost2

vh
ost3

vh
o

st0

vh
o

st1

vh
o

st2

vh
o

st3

P
O

W
E

R
 H

yp
er

v
is

o
r

Virtual I/O Server #1 Virtual I/O Server #2

MPIO MPIO MPIO MPIO
76 IBM Power Systems Performance Guide: Implementing and Optimizing

The advantages and performance considerations related to the use of shared storage pools
are:

Advantages
� There can be one or more large pools of storage, where virtual disks can be provisioned

from. This enables the administrator to see how much storage has been provisioned and
how much is free in the pool.

� All the virtual disks that are created from a shared storage pool are striped across all the
disks in the shared storage pool, reducing the likelihood of hot spots in the pool. The
virtual disks are spread over the pool in 64 MB chunks.

� Shared storage pools use cluster-aware AIX (CAA) technology for the clustering, which is
also used in IBM PowerHA, the IBM clustering product for AIX. This also means that a
LUN must be presented to all participating VIO servers in the cluster for exclusive use as
the CAA repository.

� Thin provisioning and snapshots are included in shared storage pools.

� The management of shared storage pools is simplified where volumes can be created and
mapped from both the VIOS command line, and the Hardware Management Console
(HMC) GUI.

Figure 3-13 on page 78 shows the creation of a virtual disk from shared storage pools. The
following is a summary of our setup and the provisioning steps:

� Two VIOS, p24n16 and p24n17, are participating in the cluster.

� The name of the cluster is bruce.

� The name of the shared storage pool is ssp_pool0 and it is 400 GB in size.

� The virtual disk we are creating is 100 GB in size and called aix2_vdisk1.

� The disk is mapped via virtual SCSI to the logical partition 750_2_AIX2, which is partition
ID 21.

� 750_2_AIX2 has a virtual SCSI adapter mapped to each of the VIO servers, p24n16 and
p24n17.

� The virtual disk is thin provisioned.
Chapter 3. IBM Power Systems virtualization 77

Figure 3-13 Shared storage pool virtual disk creation

Once OK is pressed in Figure 3-13, the logical partition 750_2_AIX2 will see a 100 GB virtual
SCSI disk drive.

Performance considerations
The performance considerations related to the use of shared storage pools are:

� Ensure that the max_transfer and queue_depth settings are applied to each LUN in the
shared storage pool before the pool is created, or you will need to either bring the pool
offline to modify the hdisks in the pool or reboot each of the VIOS participating in the
cluster one at a time after applying the change. This must be performed on all VIOS
attached to the shared storage pool to ensure the configuration matches. These settings
must be able to accommodate the queue_depth and max_transfer settings you apply on
the AIX LPARs using the pool, so some planning is required prior to implementation.

� If the queue_depth or max_transfer for an hdisk device needs to be changed, all of the
hdisk devices should be configured the same, and ideally of the same size on all VIO
servers participating in the cluster. For an attribute change to be applied, the shared
storage pool needs to be offline on the VIO server where the change is being applied.
Ideally, each VIO server would be changed one at a time with the setting applied to take
effect at the next reboot. The VIO servers would then be rebooted one at a time.

� Each hdisk device making up the shared storage pool will have its own queue_depth. If
you find that there are performance issues where the queue is filling up on these disks,
you may need to spread the load over more disks by adding more disks to the storage
pool. Remember that ideally all disks in the pool will be of the same size, and you cannot
resize a disk once it is assigned to the pool.

� There may be some processor overhead on the VIOS, so it is important to regularly
monitor processor usage on the VIOS and adjust as needed.

� The queue_depth and max_transfer settings must still be set on the AIX LPAR. By default
the queue_depth on a virtual SCSI disk is 3, which is insufficient in most cases.
78 IBM Power Systems Performance Guide: Implementing and Optimizing

� I/O cannot be load balanced between multiple VIOS. A virtual SCSI disk backed by a
shared storage pool can only be performing I/O operations on a single VIOS.

Figure 3-14 demonstrates, at a high level, the concept of shared storage pools in a scenario
with two VIOS and four AIX LPARs.

Figure 3-14 Shared storage pool (SSP) overview

3.6.3 N_Port Virtualization

N_Port Virtualization (NPIV) enables a single physical fiber channel port to appear as multiple
distinct ports each with its own WWN as if it were a real physical port. VIOS provides the
capability to have a single fiber channel port shared by up to 64 virtual fiber channel adapters.

NPIV is typically selected because it reduces administration on the VIOS because they are
acting as passthrough devices from the physical fiber channel port on the VIOS to the client
LPAR’s virtual Fibre Channel adapter. During the initial configuration of NPIV some additional
SAN zoning is required. Each virtual WWN belonging to a virtual Fibre Channel adapter
needs to be zoned as if it belonged to a physical adapter card. Host connectivity on the
storage system is required to be configured as if the client logical partition is a physical server
with physical fiber channel adapters.

NPIV requires that the physical Fibre Channel adapter assigned to the VIOS for NPIV use is
NPIV capable. At the time of writing only 8 Gb Fibre Channel adapters support NPIV, slower
4 Gb adapters do not.

Note: This section does not cover how to configure Shared Storage Pools. For details on
the full configuration steps, refer to IBM PowerVM Virtualization Managing and Monitoring,
SG24-7590-03.

Shared Storage Pool

AIX LPAR #1

vhost0

AIX LPAR #2 AIX LPAR #3 AIX LPAR #4

vscsi1

vscsi0

vscsi1

vscsi0

vscsi1

vscsi0

vscsi1

vscsi0

vhost1

vhost2

vhost3

vh
o

st0

vh
o

st1

vh
o

st2

vh
o

st3
P

O
W

E
R

 H
yp

er
vi

s
o

r

MPIO MPIO MPIO MPIO

Virtual I/O Server #1 Virtual I/O Server #2

Virtual Disks
Chapter 3. IBM Power Systems virtualization 79

It is also a requirement that the fabric switch supports NPIV. For Brocade fabric switches
NPIV is enabled on a port by port basis, whereas on Cisco fabric switches NPIV needs to be
enabled across the whole switch.

The advantages and performance considerations related to the use of NPIV are:

Advantages
� Once the initial configuration is complete, including virtual to physical port mapping on the

VIOS, SAN zoning and storage presentation, there is no additional configuration required
on the VIO servers. When disks are presented to client logical partitions they are not
visible on the VIO server, they are mapped directly to the client logical partition. Once the
initial configuration is complete, there is no additional configuration required at the VIOS
level to present additional LUNs to a client LPAR.

� Where storage management tools are in use, it is simpler to monitor each client logical
partition using NPIV as if it were a physical server. This provides simpler reporting and
monitoring, whereas with Virtual SCSI, all the LUNs are mapped to the VIOS. It can be
difficult to differentiate which disks are mapped to which client LPAR.

� Snapshot creation and provisioning is simpler on the storage side, because there is no
need to map volumes to the VIOS and then map them to client LPARs. If any specific
software is required to be installed on the client logical partition for snapshot creation and
management, this can be greatly simplified using NPIV.

� When using NPIV the vendor-supplied multipathing drivers are installed on the client
LPAR, because AIX will see a vendor-specific disk, not a virtual SCSI disk like in the case
of virtual SCSI. This may provide additional capabilities for intelligent I/O queueing and
load balancing across paths.

Performance considerations
� When configuring NPIV, the SAN fabric zoning must be correct. The physical WWN of the

adapter belonging to the VIOS must not be in the same zone as a virtual WWN from a
virtual Fibre Channel adapter.

� The queue depth (num_cmd_elems) and maximum transfer (max_xfer_size) configured on
the virtual fiber channel adapter in AIX, must match what is configured on the VIOS.

� Up to 64 virtual clients can be connected to a single physical fiber channel port. This may
cause the port to be saturated, so it is critical that there are sufficient ports on the VIOS to
support the workload, and the client LPARs must be evenly distributed across the available
ports.

� The correct vendor-supplied multipathing driver must be installed on the client logical
partition. Any vendor-specific load balancing and disk configuration settings must also be
applied.

Figure 3-15 on page 81 demonstrates the concept of NPIV in a scenario with two VIOS and
four AIX LPARs.
80 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 3-15 NPIV overview

It is also important to note that there are two WWPNs for each virtual fiber channel adapter.
Both WWPNs for each virtual adapter need to be zoned to the storage for live partition
mobility to work. Only one appears on the SAN fabric at any one time, so one of them needs
to be added manually. The two WWPNs for one virtual fiber channel adapter can exist in the
same zone. If they do not exist in the same zone, they must be zoned to the same target
devices. The physical fiber channel port WWPN does not need to be included in the zone.

Figure 3-16 on page 82 shows the properties of a virtual fiber channel adapter belonging to
the LPAR aix1.

Note: This section does not cover how to configure NPIV. For details on the configuration
steps, refer to IBM PowerVM Virtualization Introduction and Configuration, SG24-7590-03.

External Storage System

AIX LPAR #1

vfcho
st0

AIX LPAR #2 AIX LPAR #3 AIX LPAR #4

fcs1

fcs0

fcs1

fcs0

fcs1

fcs0

fcs1

fcs0

vfcho
st1

vfcho
st2

vfcho
st3

vfch
ost0

vfch
ost1

vfch
ost2

vfch
ost3

fcs0 fcs1 fcs0 fcs1

P
O

W
E

R
 H

y
p

er
v

is
o

r

V
irt

ua
l I

/O
 S

e
rv

er
 #

1

V
irt

ua
l I

/O
 S

er
ve

r
#2

Multipathing Driver Multipathing Driver Multipathing Driver Multipathing Driver

SAN Fabric Infrastructure
Chapter 3. IBM Power Systems virtualization 81

Figure 3-16 Displays WWPNs for a virtual fiber channel adapter

3.6.4 Conclusion

There are different reasons for using each type of disk virtualization method, and in some
cases there may be a need to use a combination of the two.

For example, Virtual SCSI provides a virtual disk on the client LPAR using native AIX MPIO
drivers. In the event that third party storage is used, it may be beneficial to use NPIV for the
non-rootvg disks for performance. However, the rootvg may be presented via virtual SCSI to
enable third-party disk device driver updates to be performed without having to reboot the
system.

Conversely, you may want to have all of the AIX storage management performed by the VIOS
using shared storage pools to reduce SAN and storage administration and provide features
such as thin provisioning and snapshots, which may not be present on the external storage
system you are using.

If your storage system provides a Quality of Service (QoS) capability, then since client logical
partitions using NPIV are treated as separate entities as if they were physical servers on the
storage system, it is possible to apply a QoS performance class to them.

From a performance perspective, NPIV typically delivers the best performance on a high I/O
workload because it behaves like an LPAR using dedicated I/O adapters with the benefit of
virtualization providing enhanced load balancing capabilities.

3.7 Optimal Shared Ethernet Adapter configuration

PowerVM offers the capability to provide a private network using the hypervisor between
client LPARs. This isolated network can be bridged to share physical Ethernet resources
assigned to a VIOS to allow client LPARs to access an external network. This sharing is
achieved with a Shared Ethernet Adapter (SEA).

In this section we provide an overview of different SEA scenarios. We additionally discuss in
detail some of the tuning options available to tune performance on the hypervisor network,
and SEAs.

In 4.5.1, “Network tuning on 10 G-E” on page 186 we discuss in more detail the performance
tuning of 10 gigabit Ethernet adapters.
82 IBM Power Systems Performance Guide: Implementing and Optimizing

The scenarios in this chapter are illustrated for the purpose of highlighting that there is no
single best configuration for a shared network setup. For instance with SEA failover or sharing
the configuration is simple and you have VLAN tagging capability. However, you may have a
situation where one VIOS is handling the majority or all of the network traffic. Likewise with
network interface backup (NIB) there is additional management complexity and configuration.
However, you can balance I/O from a single VLAN across both VIOS on an LPAR basis.

3.7.1 SEA failover scenario

Figure 3-17 on page 84 demonstrates four AIX LPARs, using SEA failover between two VIOS.
Two LPARs are sending packets tagged with one VLAN ID, while the other pair are tagged
with another VLAN ID. In this instance all of the traffic will flow through the first VIOS because
it has the lowest bridge priority, and no traffic will go through the second VIOS unless a
failover condition occurs.

The advantage of this is that the setup is very simple and enables VLAN tagging. The
disadvantage is that all of the traffic will be sent through only one of the VIOS at a time,
causing all the processor, memory and I/O load to be only on one VIOS at a time.

Refer to IBM PowerVM Best Practises, SG24-8062-00, where a number of topics relating
to shared Ethernet adapters are discussed that are only briefly covered in this section.
Chapter 3. IBM Power Systems virtualization 83

Figure 3-17 SEA failover configuration

3.7.2 SEA load sharing scenario

Figure 3-18 on page 85 demonstrates a feature known as SEA load sharing. This is in effect
when there are multiple VLANs and the attribute ha_mode=sharing is enabled on the SEA on
both VIOS. This option is available in VIOS 2.2.1.0 or later.

It is important to note that VLANs, not packets, are balanced between VIOS. This means that
in a two VLAN scenario, one VLAN is active on one VIOS, while the other VLAN is active on
the other VIOS. If one VLAN consists of the majority of network traffic, it is important to
understand that the VIOS that this VLAN is active on will still be handling the majority of the
network traffic.

Note: This is the simplest way to configure Shared Ethernet and is suitable in most cases.
No special configuration is required on the client LPAR side.

AIX LPAR #1 AIX LPAR #2 AIX LPAR #3 AIX LPAR #4

ent0
(Phy)

ent1
(Phy)

ent4
(LA)

Primary
VLAN 1,2

ent0
(Phy)

ent1
(Phy)

ent4
(LA)

Standby
VLAN 1,2

POWER Hypervisor

en0
(if)

en0
(if)

en0
(if)

ent0
(Vir)

en0
(if)

ent0
(Vir)

Virtual Switch

PVID=99

ent3
(Vir)

ent3
(Vir)

Ethernet Switch Ethernet Switch

ent5
(SEA)

ent5
(SEA)

PVID=1 PVID=1 PVID=2 PVID=2

PVID=99

PVID=1,2
Bridge =1

PVID=1,2
Bridge =2

ent2
(Vir)

Virtual I/O Server #1 Virtual I/O Server #2

ent2
(Vir)

ent0
(Vir)

ent0
(Vir)
84 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 3-18 SEA load balancing scenario

3.7.3 NIB with an SEA scenario

Figure 3-19 on page 86 shows a sample environment using Network Interface Backup (NIB).
Typically, in this scenario all of the LPARs are using a single VLAN to the outside network,
while internally they have two virtual Ethernet adapters, each with a different VLAN ID. This is
used to send network packets to one of two separate SEA adapters, one per VIOS.

With NIB to load balance you could have half of the logical partitions sending traffic primarily
to the first VIOS and in the event of a failover the second VIOS would be used, and the
reverse is true for the other half of the logical partitions.

Note: This method is suitable in cases where multiple VLANs are in use on a POWER
System. This method is simple because no special configuration is required on the client
LPAR side.

AIX LPAR #1 AIX LPAR #2 AIX LPAR #3 AIX LPAR #4

ent0
(Phy)

ent1
(Phy)

ent5
(LA)

Primary
VLAN 1
Standby
VLAN2

ent0
(Phy)

ent1
(Phy)

ent5
(LA)

POWER Hypervisor

en0
(if)

en0
(if)

en0
(if)

ent0
(Vir)

en0
(if)

ent0
(Vir)

Virtual Switch

PVID=99

ent4
(Vir)

ent4
(Vir)

Ethernet Switch Ethernet Switch

ent6
(SEA)

ent6
(SEA)

PVID=1 PVID=1 PVID=2 PVID=2

PVID=99

PVID 1

ent2
(Vir)

Virtual I/O Server #1 Virtual I/O Server #2

ent2
(Vir)

ent0
(Vir)

ent0
(Vir)

Primary
VLAN 2
Standby
VLAN1

ent3
(Vir)

ent3
(Vir)

PVID 2PVID 2

PVID 1

Bridge Priority 1
Bridge Priority 2
Chapter 3. IBM Power Systems virtualization 85

Figure 3-19 NIB scenario

3.7.4 NIB with SEA, VLANs and multiple V-switches

Figure 3-20 on page 87 shows a sample environment using NIB with multiple virtual switches
and VLAN tagging. In this scenario, there are two independent shared Ethernet adapters,
each configured on a different virtual switch.

With NIB to load balance you could have half of the logical partitions sending traffic primarily
to the first virtual switch and in the event of a failover the second virtual switch would be used,
and the reverse for the other half of the logical partitions.

Note: Special configuration is required on the client LPAR side. See 3.7.5, “Etherchannel
configuration for NIB” on page 87 for details. VLAN tagging is also not supported in this
configuration.

AIX LPAR #1 AIX LPAR #2 AIX LPAR #3 AIX LPAR #4

ent0
(Phy)

ent1
(Phy)

ent3
(LA)

Primary
VLAN 1

ent0
(Phy)

ent1
(Phy)

ent3
(LA)

POWER Hypervisor

Virtual Switch

Ethernet Switch Ethernet Switch

ent4
(SEA)

ent4
(SEA)

PVID = 1
Bridge = 1

PVID = 2
Bridge = 1

ent2
(Vir)

Virtual I/O Server #1 Virtual I/O Server #2

ent2
(Vir)

Primary
VLAN 2

en2
(if)

PVID=2

ent0
(Vir)

ent0
(Vir)

ent0
(Vir)

ent0
(Vir)

ent1
(Vir)

ent1
(Vir)

ent1
(Vir)

ent1
(Vir)

ent2
(LA)

en2
(if)

ent2
(LA)

en2
(if)

ent2
(LA)

en2
(if)

ent2
(LA)

PVID=1

PVID=2

PVID=1

PVID=2

PVID=1 PVID=1

PVID=2
86 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 3-20 NIB with SEA, VLANs and multiple V-switches

3.7.5 Etherchannel configuration for NIB

In the event that NIB is used on the AIX LPAR using virtual Ethernet, there are some
considerations to be made:

� There must be an IP address to ping that is outside the Power system. This ensures that
the Etherchannel actually fails over.

� The Etherchannel will not fail back to the main channel automatically when the primary
adapter recovers. It will only fail back when the backup adapter fails.

� When performing an installation via NIM, the IP address will be on one of the virtual
adapters, and no Etherchannel device will exist. The adapters will need to be reconfigured
in an Etherchannel configuration.

Note: Special configuration is required on the client LPAR side. See 3.7.5, “Etherchannel
configuration for NIB” on page 87 for details. This is the most complex method of
configuring shared Ethernet.

AIX LPAR #1 AIX LPAR #2

ent0
(Phy)

ent1
(Phy)

ent3
(LA)

Primary
VLAN 1,2

ent0
(Phy)

ent1
(Phy)

ent3
(LA)

POWER Hypervisor

Virtual Switch A

Ethernet Switch Ethernet Switch

ent4
(SEA)

ent4
(SEA)

PVID = 1,2
Bridge = 1

PVID = 1,2
Bridge = 1

ent2
(Vir)

Virtual I/O Server #1 Virtual I/O Server #2

Primary
VLAN 1,2

ent0
(Vir)

ent0
(Vir)

ent1
(Vir)

en2
(if)

ent2
(LA)

en2
(if)

ent2
(LA)

Virtual Switch B

PVID=1 PVID=2PVID=1 PVID=2

ent1
(Vir)

ent2
(Vir)
Chapter 3. IBM Power Systems virtualization 87

� It is suggested to balance the traffic per VIO server by having half of the VIO servers using
one VIO server as the primary adapter, and the other half using the other VIO server as
the backup adapter.

Example 3-26 demonstrates how to configure this feature with four AIX LPARs.

Example 3-26 Configuring NIB Etherchannel in AIX

root@aix1:/ #mkdev -c adapter -s pseudo -t ibm_ech -a adapter_names=ent0 -a
backup_adapter=ent1 -a netaddr=192.168.100.1
ent2 Available
root@aix2:/ # mkdev -c adapter -s pseudo -t ibm_ech -a adapter_names=ent1 -a
backup_adapter=ent0 -a netaddr=192.168.100.1
ent2 Available
root@aix3:/ # mkdev -c adapter -s pseudo -t ibm_ech -a adapter_names=ent0 -a
backup_adapter=ent1 -a netaddr=192.168.100.1
ent2 Available
root@aix4:/ # mkdev -c adapter -s pseudo -t ibm_ech -a adapter_names=ent1 -a
backup_adapter=ent0 -a netaddr=192.168.100.1
ent2 Available

3.7.6 VIO IP address assignment

For management purposes and the use of Live Partition Mobility (LPM), it is advised that
each VIO server has an IP address assigned to it. There are multiple ways that an IP address
can be configured:

� A dedicated adapter can be assigned to the VIO server for the management IP address.

� If you have a Host Ethernet Adapter in the Power System, an LHEA port can be used.

� The IP address can be put on the SEA.

� A separate virtual adapter can be assigned to the VIO server for the management IP
address.

All of these methods are perfectly valid, and there are some implications and considerations
when assigning the IP address.

If you are using LPM, it is suggested to have a separate adapter for LPM if possible. This
ensures that the high network usage for LPM does not affect any traffic on the SEA. If this is
not possible, ensure that the mover service partitions you are using for the LPM operation are
not the VIO servers that are acting as primary in an SEA failover configuration.

From the testing we performed, there was no increase in latency and no decrease in
throughput having the IP address on the SEA. This actually gave us two distinct advantages:

� We were able to use the entstat command on the SEA.

� We were able to use topas -E and collect more detailed SEA statistics with the -O option
in the nmon recordings.

The only downside we found having the IP address for the VIO server on the SEA was that in
the event of a failure on the SEA, the VIO server will not be reachable, so a terminal window
from the HMC had to be used. However, having the VIO server acting as a client by having
the IP address on a separate virtual adapter allowed us to take advantage of the SEA failover
and maintain access to our VIO server.
88 IBM Power Systems Performance Guide: Implementing and Optimizing

There is no wrong answer for where to configure the IP address on the VIO server. However,
depending on your environment there may be some advantages based on where you place
the IP address.

3.7.7 Adapter choices

Choosing the number and type of Ethernet adapters for a shared network infrastructure is
dependent on the server you have, and the workload you are placing on it.

There are a number of items that should be considered:

� What switch infrastructure exists on the network (1 Gb, 10 Gb)?

� How many gigabit or 10 gigabit adapters are required to supply the workload with
sufficient bandwidth?

� Will dual VIOS be employed? If so, will each VIOS have sufficient resources to serve the
entire workload in the event that one of the VIOS becomes unavailable?

� Will each VIOS require adapter redundancy? Where multiple adapters are placed in a link
aggregation an increased throughput and ability to handle more packets will be gained.

� Is the workload sensitive to latency? If so, what is the latency of the network?

� What quantity and type of adapter slots are present in the server?

It is important to understand how your hardware will be configured to ensure that you will have
sufficient resources for your workload. See Chapter 2, “Hardware implementation and LPAR
planning” on page 7 for further details.

3.7.8 SEA conclusion

There are multiple ways to configure shared Ethernet on Power systems to provide both
performance and redundancy for virtual networks. It is important to consider the method of
shared Ethernet to implement, and the VLAN requirements for your environment.

It is also important to ensure that sufficient processor, memory and adapter bandwidth
resources are available to your shared Ethernet implementation.

Table 3-10 provides a summary of the different shared Ethernet implementation methods,
and when they could be used.

Table 3-10 SEA implementation method summary

Implementation Method When to use

SEA failover SEA failover is the typical way to implement shared Ethernet
when you have an environment with one or more VLANs with
dual VIO servers, and you do not want to have any special
configuration on the client LPARs. This is the preferred
method when you have a single VLAN. The presumed
downside is that one VIO server handles all the traffic.
However, you also know that if that VIO server fails, the other
VIO server with identical configuration will handle all of the
network traffic without degradation so this may not be a
downside.
Chapter 3. IBM Power Systems virtualization 89

3.7.9 Measuring latency

Appreciating the latency in your network, be that between physical machines or adjacent
LPARs, can be key in time-sensitive environments.

There are tools such as tcpdump available in AIX that provide the capability to measure
network latency. It is important to profile latency when there is background traffic on the
network, in addition to observing peak load. This will provide you with the perspective to
understand whether there is a bottleneck or not.

Example 3-27 shows a sample shell script that can be run on an AIX system to measure the
average latency between itself and a routable destination.

It is suggested to use this or something similar to measure the latency between LPARs on the
same Power system, to measure latency across the hypervisor and to hosts outside of the
physical system, and to measure latency to another system.

Example 3-27 netlatency.sh

#!/bin/ksh
usage () {
 MESSAGE=$*
 echo

SEA failover with load sharing SEA failover with load sharing is the preferred method when
you have two or more VLANs. There is no special
configuration required on the client LPAR side and VLANs
are evenly balanced across the VIO servers. This balancing
is based on the number of VLANs, not on the amount of
traffic per VLAN. To force VLANs to use a specific SEA or
VIO server, it may be required to use SEA failover with
multiple SEA adapters with rotating bridge priorities between
the VIO servers for each SEA and different VLANs assigned
to each SEA. Where multiple SEAs are in use, it is strongly
suggested to have each SEA on a different Vswitch.

NIB with no VLAN tagging The VIO server configuration for this method is very
straightforward because no control channel needs to be
configured. However, there is special Ether channel
configuration required on the client side. When balancing
LPARs between the VIO servers, it is important that no VIO
server is busy beyond 50% because a single VIO server may
not have enough resources to support all the network traffic.
VLAN tagging is not supported using this method.

NIB with Multiple Vswitches and
VLAN tagging

This configuration method is more complicated, because
multiple virtual switches need to be configured on the Power
system, to enable VLAN tagging. There is also a
requirement to have Ether channel configured on the client
LPAR side. The same sizing requirement applies to ensure
that the VIO servers are not busy beyond 50% to ensure that
a single VIO server has the resources to support all of the
network load.

Note: This section provides guidance on where different SEA configurations can be used.
Ensure that the method you choose meets your networking requirements.

Implementation Method When to use
90 IBM Power Systems Performance Guide: Implementing and Optimizing

 echo "$MESSAGE"
 echo
 echo $0 -i INTERFACE -d dest_ip [-c nb_packet]
 exit 3
}

tcpdump_latency () {
 INTERFACE=$1
 DEST_HOST=$2
 COUNT=`echo "$3 * 2" | bc`

 tcpdump -c$COUNT -tti $INTERFACE icmp and host $DEST_HOST 2>/dev/null | awk '
 BEGIN { print "" }
 /echo request/ { REQUEST=$1 ; SEQUENCE=$12 }
 /echo reply/ && $12==SEQUENCE { COUNT=COUNT+1 ; REPLY=$1 ; LATENCY=(REPLY-REQUEST)*1000 ;

 SUM=SUM+LATENCY ; print "Latency Packet " COUNT " : " LATENCY " ms"}
 END { print ""; print "Average latency (RTT): " SUM/COUNT " ms" ; print""}
 ' &
}
COUNT=10

while getopts ":i:d:c:" opt
do
 case $opt in
 i) INTERFACE=${OPTARG} ;;
 d) DEST_HOST=${OPTARG} ;;
 c) COUNT=${OPTARG} ;;
 \?) usage USAGE
 return 1
 esac
done

##########################
TEST Variable
[-z "$INTERFACE"] && usage "ERROR: specify INTERFACE"
[-z "$DEST_HOST"] && usage "ERROR: specify Host IP to ping"

############################
MAIN

tcpdump_latency $INTERFACE $DEST_HOST $COUNT
sleep 1

OS=`uname`
 case "$OS" in
 AIX) ping -f -c $COUNT -o $INTERFACE $DEST_HOST > /dev/null ;;
 Linux) ping -A -c$COUNT -I $INTERFACE $DEST_HOST > /dev/null ;;
 \?) echo "OS $OS not supported" ;exit 1
esac
exit 0

The script output in Example 3-28 shows the round trip latency of each packet and the
average latency across the 20 packets. The script was executed with the following
parameters:

� -i is the interface that we will be sending the traffic out of, in this case ent0.

� -d is the target host or device that we are testing latency between. In this case it is another
AIX system with the hostname aix2.

� -c is the amount of packets we are going to send, in this case 20 packets.

Example 3-28 Latency test

root@aix1:/usr/local/bin # ./netlatency.sh -i en0 -d aix2 -c 20

Latency Packet 1 : 0.194788 ms
Latency Packet 2 : 0.0870228 ms
Latency Packet 3 : 0.0491142 ms
Latency Packet 4 : 0.043869 ms
Latency Packet 5 : 0.0450611 ms
Latency Packet 6 : 0.0619888 ms
Latency Packet 7 : 0.0431538 ms
Latency Packet 8 : 0.0360012 ms
Chapter 3. IBM Power Systems virtualization 91

Latency Packet 9 : 0.0281334 ms
Latency Packet 10 : 0.0369549 ms
Latency Packet 11 : 0.043869 ms
Latency Packet 12 : 0.0419617 ms
Latency Packet 13 : 0.0441074 ms
Latency Packet 14 : 0.0400543 ms
Latency Packet 15 : 0.0360012 ms
Latency Packet 16 : 0.0448227 ms
Latency Packet 17 : 0.0398159 ms
Latency Packet 18 : 0.0369549 ms
Latency Packet 19 : 0.0441074 ms
Latency Packet 20 : 0.0491142 ms

Average latency (RTT): 0.0523448 ms

The latency between AIX systems or between an AIX system and a device differs depending
on network configuration and load on that network.

3.7.10 Tuning the hypervisor LAN

The Power hypervisor is used for network connectivity between client LPARs, as well as client
LPAR connectivity to a VIOS for SEA access.

Figure 3-21 gives a simplified example of how a Power system may be configured, and we
look closely at the connectivity on VLAN 100, which is simply used for LPAR communications.

Figure 3-21 Sample configuration with separate VLAN for partition communication

The network may not be capable of accepting network packets with an MTU close to 64 k; so
perhaps the VLAN for external communication on the Power system may have an MTU of
9000, and Jumbo Frames are enabled on the external network where we use a separate IP
range on a different VLAN for partition communications. This can be particularly useful if one
of the logical partitions on the Power system is a backup server LPAR, for example Tivoli
Storage Manager (TSM) or a NIM server.

VIO Server AIX Logical Partition AIX Logical Partition AIX Logical Partition VIO Server

VLAN 100 – Private Partition Communication

External Network – Jumbo Frame Enabled, Flow Control On

VLAN 1 Partition External Communication

VLAN 99 SEA Failover

POWER System

SEA

Physical
Adapter

Ctl Chan
Bridge

Adapter

SEA

Physical
Adapter

Ctl Chan
Bridge

Adapteren0 – MTU 9000 en0 – MTU 9000en0 – MTU 9000

en1 – MTU 65390 en1 – MTU 65390en1 – MTU 65390
92 IBM Power Systems Performance Guide: Implementing and Optimizing

In Example 3-29 we can run a simple test using the netperf utility to perform a simple and
repeatable bandwidth test between en0 in the aix1 LPAR and en0 on the aix2 LPAR in
Figure 3-11 on page 65. The test duration will be 5 minutes.

Example 3-29 How to execute the netperf load

root@aix1:/ # netperf -H 192.168.100.12 -l 600

At this point in the example, all of the default AIX tunables are set. We can see in Figure 3-22
that the achieved throughput on this test was 202.7 megabytes per second.

Figure 3-22 Network throughput with default tunables and a single netperf stream

For the next test, we changed some tunables on the en0 interface utilizing the hypervisor
network and observed the results of the test.

Table 3-11 describes some of the tunables that were considered prior to performing the test.

Table 3-11 AIX network tunables considered

Tunable Description Value

mtu size Media Transmission Unit (MTU) size is the largest
packet that AIX will send. Increasing the mtu size will
typically increase performance for streaming
workloads. The value 64390 is the maximum value
minus VLAN overhead.

65390 (for large
throughput)

flow control Flow control is a TCP technique which will match the
transmission rate of the sender with the
transmission rate of the receiver. This is enabled by
default in AIX.

on

large send The TCP large send offload option enables AIX to
build a TCP message up to 64 KB in size for
transmission.

on

large receive The TCP large receive offload option enables AIX to
aggregate multiple received packets into a larger
buffer reducing the amount of packets to process.

on

rfc1323 This tunable, when set to 1, enables TCP window
scaling when both ends of a TCP connection have
rfc1323 enabled.

1

tcp send or
receive space

These values specify how much data can be
buffered when sending or receiving data. For most
workloads the default of 16384 is sufficient.
However, in high latency situations these values
may need to be increased.

16384 is the default,
increasing to 65536 may
provide some increased
throughput.
Chapter 3. IBM Power Systems virtualization 93

These tunables are discussed in more detail in the AIX 7.1 Information Center at:

http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp

Example 3-30 demonstrates the tuning changes we made during the test. These changes
included:

� Increasing the MTU size on both AIX LPARs from 1500 to 64390.

� Enabling largesend using the mtu_bypass option.

� Enabling Data Cache Block Flush with the dcbflush_local option. Note that the interface
had to be down for this change to be applied.

� Enabling rfc1323 to take effect and to be persistent across reboots.

Example 3-30 Apply tunables to AIX logical partitions

root@aix1:/ # chdev -l en0 -a mtu=65390
en0 changed
root@aix1:/ # chdev -l en0 -a mtu_bypass=on
en0 changed
root@aix1:/ # chdev -l en0 -a state=down
en0 changed
root@aix1:/ # chdev -l en0 -a state=detach
en0 changed
root@aix1:/ # chdev -l ent0 -a dcbflush_local=yes
ent0 changed
root@aix1:/ # chdev -l en0 -a state=up
en0 changed
root@aix1:/ # no -p -o rfc1323=1
Setting rfc1323 to 1
Setting rfc1323 to 1 in nextboot file
Change to tunable rfc1323, will only be effective for future connections
root@aix1:/ #

root@aix2:/ # chdev -l en0 -a mtu=65390
en0 changed
root@aix2:/ # chdev -l en0 -a mtu_bypass=on
en0 changed
root@aix2:/ # chdev -l en0 -a state=down
en0 changed
root@aix2:/ # chdev -l en0 -a state=detach

checksum offload This option allows the network adapter to compute
the TCP checksum rather than the AIX system
performing the computation. This is only valid for
physical adapters.

yes

dcbflush_local Data Cache Block Flush (dcbflush) is an attribute for
a virtual Ethernet adapter that allows the virtual
Ethernet device driver to flush the processor’s data
cache of any data after it has been received.

yes

Note: It is important to try tuning each of these parameters individually and measuring the
results. Your results may vary from the tests performed in this book. It is also expected that
changes occur in processor and memory utilization as a result of modifying these tunables.

Tunable Description Value
94 IBM Power Systems Performance Guide: Implementing and Optimizing

http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp

en0 changed
root@aix2:/ # chdev -l ent0 -a dcbflush_local=yes
ent0 changed
root@aix2:/ # chdev -l en0 -a state=up
en0 changed
root@aix2:/ # no -p -o rfc1323=1
Setting rfc1323 to 1
Setting rfc1323 to 1 in nextboot file
Change to tunable rfc1323, will only be effective for future connections
root@aix2:/ #

If the mtu_bypass option is not available on your adapter, run the tunable as follows instead;
however, this change is not persistent across reboots. You need to add this to /etc/rc.net to
ensure that largesend is enabled after a reboot (Example 3-31).

Example 3-31 Enable largesend with ifconfig

root@aix1:/ # ifconfig en0 largesend
root@aix1:/ #
root@aix2:/ # ifconfig en0 largesend
root@aix2:/ #

Figure 3-23 shows the next netperf test performed in exactly the same way as Example 3-29
on page 93. It is noticeable that this test delivered over a 7x improvement in throughput.

Figure 3-23 Network throughput with modified tunables and a single netperf stream

Figure 3-24 shows additional netperf load using additional streams to deliver increased
throughput, demonstrating that the capable throughput is dependant on how network
intensive the workload is.

Figure 3-24 Network throughput with modified tunables again, but with additional netperf load

Note: Example 3-30 on page 94 requires that the en0 interface is down for some of the
settings to be applied.
Chapter 3. IBM Power Systems virtualization 95

3.7.11 Dealing with dropped packets on the hypervisor network

When load on a virtual Ethernet adapter is heavy, there is a situation that will occur when two
items become an issue:

� Latency increased across the hypervisor network between logical partitions.
“Etherchannel configuration for NIB” on page 87 describes network latency. It is important
to monitor the latency of the network.

� The virtual Ethernet adapter’s receive buffers are exhausted and packets will be
retransmitted and thoughput will decrease. This is shown in Example 3-32 where the aix1
LPAR is experiencing dropped packets.

– Packets Dropped is the total amount of packets that could not be received by the aix1
LPAR.

– No Resource Errors is the total number of times that the aix1 LPAR was unable to
receive any more packets due to lack of buffer resources.

– Hypervisor Receive Failures is the total number of packets the hypervisor could not
deliver to because the receive queue was full.

– Hypervisor Send Failures is the total number of times that a packet could not be sent
due to a buffer shortage.

Example 3-32 The netstat -v output demonstrating dropped packets

root@aix1:/ # netstat -v ent0

ETHERNET STATISTICS (ent0) :
Device Type: Virtual I/O Ethernet Adapter (l-lan)
Hardware Address: 52:e8:7f:a2:19:0a
Elapsed Time: 0 days 0 hours 35 minutes 48 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 76773314 Packets: 39046671
Bytes: 4693582873534 Bytes: 45035198216
Interrupts: 0 Interrupts: 1449593
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 8184
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 14 Broadcast Packets: 4474
Multicast Packets: 8 Multicast Packets: 260
No Carrier Sense: 0 CRC Errors: 0
DMA Underrun: 0 DMA Overrun: 0
Lost CTS Errors: 0 Alignment Errors: 0
Max Collision Errors: 0 No Resource Errors: 8184
Late Collision Errors: 0 Receive Collision Errors: 0
Deferred: 0 Packet Too Short Errors: 0
SQE Test: 0 Packet Too Long Errors: 0
Timeout Errors: 0 Packets Discarded by Adapter: 0
Single Collision Count: 0 Receiver Start Count: 0
Multiple Collision Count: 0
Current HW Transmit Queue Length: 0
96 IBM Power Systems Performance Guide: Implementing and Optimizing

General Statistics:

No mbuf Errors: 0
Adapter Reset Count: 0
Adapter Data Rate: 20000
Driver Flags: Up Broadcast Running
 Simplex 64BitSupport ChecksumOffload
 DataRateSet

Virtual I/O Ethernet Adapter (l-lan) Specific Statistics:

RQ Length: 4481
Trunk Adapter: False
Filter MCast Mode: False
Filters: 255
 Enabled: 2 Queued: 0 Overflow: 0
LAN State: Operational

Hypervisor Send Failures: 2090
 Receiver Failures: 2090
 Send Errors: 0
Hypervisor Receive Failures: 8184

Invalid VLAN ID Packets: 0

ILLAN Attributes: 0000000000003002 [0000000000003002]

Port VLAN ID: 1
VLAN Tag IDs: None

Switch ID: ETHERNET0

Hypervisor Information
 Virtual Memory
 Total (KB) 79
 I/O Memory
 VRM Minimum (KB) 100
 VRM Desired (KB) 100
 DMA Max Min (KB) 128

Transmit Information
 Transmit Buffers
 Buffer Size 65536
 Buffers 32
 History
 No Buffers 0
 Virtual Memory
 Total (KB) 2048
 I/O Memory
 VRM Minimum (KB) 2176
 VRM Desired (KB) 16384
 DMA Max Min (KB) 16384
Chapter 3. IBM Power Systems virtualization 97

Receive Information
 Receive Buffers
 Buffer Type Tiny Small Medium Large Huge
 Min Buffers 512 512 128 24 24
 Max Buffers 2048 2048 256 64 64
 Allocated 512 512 156 24 64
 Registered 511 512 127 24 18
 History
 Max Allocated 512 512 165 24 64
 Lowest Registered 511 510 123 22 12
 Virtual Memory
 Minimum (KB) 256 1024 2048 768 1536
 Maximum (KB) 1024 4096 4096 2048 4096
 I/O Memory
 VRM Minimum (KB) 4096 4096 2560 864 1632
 VRM Desired (KB) 16384 16384 5120 2304 4352
 DMA Max Min (KB) 16384 16384 8192 4096 8192

I/O Memory Information
 Total VRM Minimum (KB) 15524
 Total VRM Desired (KB) 61028
 Total DMA Max Min (KB) 69760

root@aix1:/ #

Under Receive Information in the netstat -v output in Example 3-32 on page 96, the type
and number of buffers are listed. If at any point the Max Allocated under history reaches the
max Buffers in the netstat -v output, it may be required to increase the buffer size to help
overcome this issue.

Our max_buf_huge was exhausted due to the nature of the netperf streaming workload. The
buffers which may require tuning are very dependant on workload and it is advisable to tune
these only under the guidance of IBM support. Depending on the packet size and number of
packets, different buffers may need to be increased. In our case it was large streaming
packets, so only huge buffers needed to be increased.

Example 3-33 demonstrates how to increase the huge buffers for the ent0 interface. The en0
interface will need to be brought down for this change to take effect.

Example 3-33 How to increase the virtual Ethernet huge buffers

root@aix1:/ # chdev -l en0 -a state=down
en0 changed
root@aix1:/ # chdev -l en0 -a state=detach
en0 changed
root@aix1:/ # chdev -l ent0 -a min_buf_huge=64 -a max_buf_huge=128
ent0 changed
root@aix1:/ # chdev -l en0 -a state=up
en0 changed
root@aix1:/ #

Note: We suggest to review the processor utilization before making any changes to the
virtual Ethernet buffer tuning. Buffers should only be tuned if the allocated buffers reaches
the maximum buffers. If in doubt, consult with IBM support.
98 IBM Power Systems Performance Guide: Implementing and Optimizing

3.7.12 Tunables

Typically, VIOS are deployed in pairs, and when Ethernet sharing is in use each VIOS has a
physical adapter that acts as a bridge for client LPARs to access the outside network.

Physical tunables
It is important to ensure that the physical resources that the shared Ethernet adapter is built
on top of are configured for optimal performance. 4.5.1, “Network tuning on 10 G-E” on
page 186 describes in detail how to configure physical Ethernet adapters for optimal
performance.

EtherChannel tunables
When creating a Link Aggregation that a SEA is built on top of, it is important to consider the
options available when configuring the EtherChannel device.

There are a number of options available when configuring aggregation; we suggest to
consider the following:

� mode - This is the EtherChannel mode of operation. A suggested value is 8023ad.

� use_jumbo_frame - This enables Gigabit Ethernet Jumbo Frames.

� hash_mode - This determines how the outgoing adapter is chosen. A suggested value is
src_dst_port.

Example 3-34 demonstrates how to create a link aggregation using these options.

Example 3-34 Creation of the link aggregation

$ mkvdev -lnagg ent1,ent2 -attr mode=8023ad hash_mode=src_dst_port
use_jumbo_frame=yes
ent5 Available
en5
et5
$

SEA tunables
When creating an SEA it is important to consider the options available to improve
performance on the defined device.

Options that should be considered are:

� jumbo_frames - This enables gigabit Ethernet jumbo frames.

� large_receive - This enables TCP segment aggregation,

� largesend - This enables hardware transmit TCP resegmentation.

Example 3-35 demonstrates how to create a shared Ethernet adapter on top of the ent5
EtherChannel device using ent3 as the bridge adapter and ent4 as the control channel
adapter.

Example 3-35 Creation of the shared Ethernet adapter

$ mkvdev -sea ent5 -vadapter ent3 -default ent3 -defaultid 1 -attr ha_mode=auto
ctl_chan=ent4 jumbo_frames=yes large_receive=yes largesend=1
ent6 Available
Chapter 3. IBM Power Systems virtualization 99

en6
et6
$

Monitoring and accounting
Accounting can be enabled for an SEA that at the time of writing is not enabled by default. It is
suggested that this option be enabled to allow use of seastat to report SEA-related statistics.

Example 3-36 demonstrates how to enable SEA accounting.

Example 3-36 Enabling SEA accounting

$ lsdev -type adapter |grep "Shared Ethernet Adapter"
ent6 Available Shared Ethernet Adapter
$ chdev -dev ent6 -attr accounting=enabled
ent6 changed
$ lsdev -dev ent6 -attr |grep accounting
accounting enabled Enable per-client accounting of network statistics
True
$

3.8 PowerVM virtualization stack configuration with 10 Gbit

The PowerVM virtualization stack (Figure 3-25 on page 101) consists of the Virtual I/O Server
with Shared Ethernet Adapter (SEA) backed by physical Ethernet adapters with or without link
aggregation (Etherchannels), virtual Ethernet trunk adapters, and AIX or Linux or IBM i
partitions with virtual Ethernet adapters.

Between the virtual Ethernet adapters are the hypervisor virtual switches.

Beyond the physical Ethernet adapters are the actual physical network, with switches,
routers, and firewalls, all of which impact network throughput, latency and round trip times.

Any tunables that have been applied to the SEA on the VIOS, the adapter or devices it is
defined onto, must match the switch configuration. This includes but is not limited to:

� EtherChannel mode; for example, 8023.ad
� Jumbo frames
� Flow control
100 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 3-25 PowerVM virtualization stack overview

In some network environments, network and virtualization stacks, and protocol endpoint
devices, other settings might apply.

Gigabit Ethernet and VIOS SEA considerations:

1. For optimum performance, ensure adapter placement according to Adapter Placement
Guide, and size VIOS profile with sufficient memory and processing capacity to fit the
expected workload, such as:

– No more than one 10 Gigabit Ethernet adapter per I/O chip.
– No more than one 10 Gigabit Ethernet port per two processors in a system.
– If one 10 Gigabit Ethernet port is present per two processors in a system, no other 10

Gb or 1 Gb ports should be used.

2. Each switch port

– Verify that flow control is enabled.

3. On each physical adapter port in the VIOS (ent).chksum_offload enabled (default)

– flow_ctrl enabled (default)
– large_send enabled (preferred)
– large_receive enabled (preferred)
– jumbo_frames enabled (optional)
– Verify Adapter Data Rate for each physical adapter (entstat -d/netstat -v)

4. On the Link Aggregation in the VIOS (ent)

– Load Balance mode (allow the second VIOS to act as backup)
– hash_mode to src_dst_port (preferred)

Note: Apart from LRO, the configuration is also applicable for 1 Gbit.
Chapter 3. IBM Power Systems virtualization 101

– mode to 8023ad (preferred)
– use_jumbo_frame enabled (optional)
– Monitor each physical adapter port with entstat command to determine the selected

hash_mode effectiveness in spreading the outgoing network load over the link
aggregated adapters

5. On the SEA in the VIOS (ent)

– largesend enabled (preferred)
– jumbo_frames enabled (optional)
– netaddr set for primary VIOS (preferred for SEA w/failover)

• Use base VLAN (tag 0) to ping external network address (beyond local switch).
• Do not use switch or router virtual IP address to ping (if its response time might

fluctuate).
– Consider disabling SEA thread mode for SEA only VIOS.
– Consider implementing VLAN load sharing.

• http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/p7hb1/iphb1_vio
s_scenario_sea_load_sharing.htm

• http://www-01.ibm.com/support/docview.wss?uid=isg3T7000527

6. On the virtual Ethernet adapter in the VIOS (ent)

– chksum_offload enabled (default)
– Consider enabling dcbflush_local
– In high load conditions, the virtual Ethernet buffer pool management of adding and

reducing the buffer pools on demand can introduce latency of handling packets (and
can result in drops of packets, “Hypervisor Receive Failures”).

• Setting the “Min Buffers” to the same value as “Max Buffers” allowed will eliminate
the action of adding and reducing the buffer pools on demand. However, this will
use more pinned memory.

• For VIOS in high end servers, you might also have to increase the max value to its
maximum allowed, and then increase the min value accordingly. Check the
maximum value with the lsattr command, such as: lsattr -Rl ent# -a
max_buf_small

• Max buffer sizes: Tiny (4096), Small (4096), Medium (2048), Large (256),
Huge (128)

7. On the virtual Ethernet adapter in the virtual client/partition (ent)

– chksum_offload enabled (default)

• Monitoring utilization with enstat -d or netstat -v and if “Max Allocated” is higher
than “Min Buffers”, increase to higher value than “Max Allocated” or to “Max
Buffers”, for example: Increase the "Min Buffers“ to be greater than "Max Allocated"
by increasing it up to the next multiple of 256 for "Tiny" and "Small" buffers, by the
next multiple of 128 for "Medium" buffers, by the next multiple of 16 for "Large“
buffers, and by the next multiple of 8 for "Huge" buffers.

8. On the virtual network interface in the virtual client/partition (en)

– mtu_bypass enabled

• Is the largesend attribute for virtual Ethernet (AIX 6.1 TL7 SP1 or AIX7.1 SP1)

• If not available, set with the ifconfig command after each partition boot in
/etc/rc.net or equiv by init, for example: ifconfig enX largesend

– Use the device driver built-in interface specific network options (ISNO)

• ISNO is enabled by default (the no tunable use_isno).
• Device drivers have default settings, leave the default values intact.
• Check current settings with the ifconfig command.
102 IBM Power Systems Performance Guide: Implementing and Optimizing

• Change with the chdev command.
• Can override with the ifconfig command or setsockopt() options.

– Set mtu to 9000 if using jumbo frames (network support required)

• Default mtu is 1500 (Maximum Transmission Unit/IP)
• Default mss is 1460 (Maximum segment Size/TCP) with RFC1323 disabled
• Default mss is 1448 (Maximum segment Size/TCP) with RFC1323 enabled

– Consider enabling network interface thread mode (dog thread)

• Set with the ifconfig command, for example: ifconfig enX thread
• Check utilization with the netstat command: netstat -s| grep hread
• For partitions with dozens of VPs, review the no tunable ndogthreads
• http://pic.dhe.ibm.com/infocenter/aix/v7r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/

prftungd/enable_thread_usage_lan_adapters.htm

A note on monitoring adapter port transmit statistics to determine how the actual workload
spreads the network traffic over link aggregated (Etherchanneled) adapter ports.

Use the entstat command (or netstat -v) and summarize, as in Table 3-12. In this case we
deploy an adapter port link aggregation in 8023ad mode using default hash_mode.

The lsattr command:

adapter_names ent0,ent1,ent4,ent6 EtherChannel Adapters
hash_mode default Determines how outgoing adapter is chosen
mode 8023ad EtherChannel mode of operation

The statistics in this case show that the majority of the outgoing (transmit) packets go out over
ent6, and approximately 1/3 of the total packets go out over ent4, with ent0 and ent1
practically unused for outgoing traffic (the receive statistics are more related to load balancing
from the network side, and switch MAC tables and trees).

Table 3-12 Etherchannel/Link Aggregation statistics with hash_mode default

3.9 AIX Workload Partition implications, performance and
suggestions

Workload Partitions (WPARs) were introduced with AIX 6.1 in 2007. A WPAR is a software
implementation of partitioning provided just by the operating system. The WPAR components
have been regularly enhanced with subsequent AIX releases, including IPv6 and NPIV
support. AIX 7.1 also introduced the notable addition of Versioned WPARs. This feature
allows both AIX 5.2 and 5.3 to be hosted in a WPAR.

Device Transmit
packets

% of total Receive packets % of total

ent0 811028335 3% 1239805118 12%

ent1 1127872165 4% 2184361773 21%

ent4 8604105240 28% 2203568387 21%

ent6 19992956659 65% 4671940746 45%

Total 29408090234 100% 8115314251 100%
Chapter 3. IBM Power Systems virtualization 103

3.9.1 Consolidation scenario

This first scenario uses WPARs as a consolidation vehicle to collapse three LPARs into one
larger LPAR. We demonstrate the sequence to migrate from LPAR to WPAR and discuss our
observations about sizing and performance that should be considered for such
implementations.

Our scenario begins with three AIX 7.1 TL02 LPARs hosted on a Power 750 server.
Figure 3-26 provides a high-level view of this scenario.

Figure 3-26 LPAR to WPAR scenario

The three LPARs were indentical in size. Table 3-13 details the LPAR resource configuration.
The LPARs were generically defined for the test case—they were not sized based on their
hosted workload footprint.

Table 3-13 LPAR configuration of consolidation candidates

Each LPAR hosted a deployment of our WebSphere Message Broker sample application.
However, the application was configured differently on each LPAR to give a footprint; the
sample application was configured to run with one application thread on LPAR1, two on
LPAR2, and eight on LPAR4. So while the hosted application was the same, we were
consolidating three different footprints.

A fourth LPAR was created with the same allocation of four VPs and 8 GB, but with additional
storage. A secondary volume group was created of 120 GB to host the WPARs. This
separation from rootvg was implemented to avoid any unnecessary contention or background
noise.

CPU RAM Storage

4 VPs, EC 1.0, uncapped 8 GB (dedicated) 60 GB (via vSCSI)

AIX 7.1 LPAR (Global AIX)

wparvg

AIX 7.1 WPAR

AIX 7.1 LPAR

AIX 7.1 LPAR

AIX 7.1 LPAR

AIX 7.1 WPAR

AIX 7.1 WPAR

rootvg

EC = 1
VP = 4

MEM = 8GB

EC = 1
VP = 4

MEM = 8GB

EC = 1
VP = 4

MEM = 8GB

Shared Processor and Memory Resources

rootvg

rootvg

rootvg

rootvg

rootvg
104 IBM Power Systems Performance Guide: Implementing and Optimizing

For each LPAR, we ran the sample application for 10 minutes to obtain a baseline TPS. The
applications were quiesced and a clean mksysb backup taken of each LPAR.

After transferring the mksysb files to the fourth LPAR, we used a new feature of the mkwpar
command introduced with AIX 7.1 TL02. The additional functionality introduces a variant of a
System WPAR called a System Copy WPAR. It allows a System WPAR to be created from a
mksysb; so the feature is similar in operation to the creation of a Versioned WPAR.

Example 3-37 shows the mkwpar command used to create one of the System Copy WPARs.

Example 3-37 mkwpar command

mkwpar -n WPAR1 -g wparvg -h p750s2aix2wp4 -N interface=en0
address=192.168.100.100 netmask=255.255.255.0 -A -s -t -B /export/mksysb_LPAR1

Parameters of interest are -g, which overrides the hosting volume group (the default is
rootvg); -t, which informs the command to copy rootvg from a system backup specified by the
subsequent -B flag.

The process was repeated to create a second and third WPAR. No resource controls were
implemented on any of the WPARs. Example 3-38 shows the output from the lswpar
command after all three were created.

Example 3-38 lswpar command

lswpar
Name State Type Hostname Directory RootVG WPAR

WPAR1 A S p750s2aix2wp1 /wpars/WPAR1 no
WPAR2 A S p750s2aix2wp2 /wpars/WPAR2 no
WPAR3 A S p750s2aix2wp3 /wpars/WPAR3 no

The time required to create a WPAR from an mksysb will naturally vary depending on the size
of your mksysb. In our case it took around 5 minutes per WPAR.

Having successfully created our WPARs, we verified that all required file systems and
configurations were preserved from the mksysb. mkwpar had successfully deployed a WPAR
from the given mksysb; file systems were intact and the Message Broker application restarted
clean in all three cases.

Next we repeated the 10-minute WebSphere Message Broker workload, running individually
in each WPAR in parallel; that is, all three WPARs were active and running their own workload
at the same time. This gave an initial comparison of how the workloads performed compared
to running in isolation on an LPAR. But it also demonstrated how the three workloads
tolerated the initial sizing of the hosting LPAR.

Because this scenario is based around consolidation, for simplicity we will normalize the
performance of the three WPARs as a percentage of the TPS obtained by the baseline
LPARs. For example, with our initial configuration of 4VP, the three WPARs in parallel
delivered approximately 78% of the combined baseline TPS. First impressions may suggest
this is a worrying result; however, remember that the Global LPAR has a third of the processor

Note: For reference the mksysb can be as old as AIX 4.3.3, but part of the deployment
process requires the created WPAR to be synchronized to the level of the hosting Global
system before it can be started.
Chapter 3. IBM Power Systems virtualization 105

allocation compared to the original LPARs. The three LPARs combined had a total of 12 VPs,
compared to the hosting LPAR, which had four. In context, 78% is actually quite encouraging.

We continued by amending the processor allocation and rerunning the workloads to profile
the change in TPS. The LPAR was increased from 4VP in increments up to 12VP. We also
tried a configuration of dedicated processor allocation as a comparison. Figure 3-27
illustrates the %TPS delivered by the five different configurations.

Figure 3-27 Global LPAR TPS

So for our scenario, when considering the combined workloads as a whole, 8VP proved to be
the better configuration. Interestingly, the dedicated processor configuration was less efficient
than a shared-processor LPAR of the same allocated size.

Illustrating the usage from another angle, Table 3-14 lists the average processor consumption
during the 10-minute duration baseline on the original LPARs.

Table 3-14 LPAR CPU consumption

Almost 7.0 processor units were required for the three LPARs. Compare that to the results
obtained for the 4VP configuration that consumed only 3.95 units. Another viewpoint is that
approximately 57% of the processor resource produced 66% of the original throughput. It is
important to consider the difference in consumed resource, compared to the combined
throughput. The sustained consumption from the other configurations is listed in Table 3-15
on page 107.

LPAR LPAR1 LPAR2 LPAR3

Processor consumption 1.03 2.06 3.80

Global LPAR TPS

0.00

20.00

40.00

60.00

80.00

100.00

120.00

4VP 6VP 6 DCPU 8 VP 12 VP

LPAR Processor Config

%
 T

P
S

106 IBM Power Systems Performance Guide: Implementing and Optimizing

Table 3-15 Global LPAR processor consumption

The figures show that as the VPs increased, the utilization ultimately peaked and then
dropped. The results in Table 3-15 conclude that 8VP was the better configuration for our
tests, because 8VPs provided the best TPS of the tested configurations and the processor
consumption was only marginally higher than the sum of the original LPARs. This suggested
that the overhead for the Global LPAR was actually quite small. However, we were still
concerned about the differences in observed TPS.

One thought was that Global LPAR hosting the WPARs was part of the cause. To rule this out
we ran the workloads independently, with the Global LPAR in the 8VP configuration, with only
one given WPAR active at once. Table 3-16 shows the percentage of throughput compared to
the associated original LPAR; in each case more than 100% was achieved.

Table 3-16 Individual WPAR performance compared to individual LPAR

Completing the analysis of this scenario, we compared the overhead of the original three
LPARs and the hosting Global LPAR for the amount of hypervisor calls. We expected that a
single LPAR should be less of an overhead than three; however, it was unclear from available
documentation whether the use of WPARs would significantly increase calls to the hypervisor.
We reran our 10-minute workloads and used lparstat to record the hypervisor call activity
over the duration and provide a per-second average.

For our scenario we found the comparison between the sum of the LPARs and the Global
LPAR quite surprising. The Global LPAR used 42% fewer hypervisor calls (per second)
compared to the sum of the three LPARs. This is because the LPAR was containing some of
the hosting overhead normally placed onto the hypervisor. It is important to appreciate the
benefit of reducing unnessary load on the hypervisor; this frees up processor cycles for other
uses such as shared processor and memory management, Virtual Ethernet operations, and
dynamic LPAR overheads.

The difference in results between the original LPARs, compared to the various configurations
of WPARs results from the contention of the primary SMT threads on each VP. Running
isolation on an LPAR, there is no competition for the workload. Even when the host LPAR had
the same resources as the combined three LPARs, there is enough contention between the
workloads to result in the degradation of the smaller workloads. The larger workload actually
benefits from there being more VPs to distribute work across.

When a workload test was in progress, we used nmon to observe the process usage across a
given allocation. This allowed us to appreciate how the footprint of the whole Global LPAR
changed as the resources were increased; nmon also allowed us to track the distribution and
usage of SMT threads across the LPAR.

To complete the investigations on our consolidation scenario, we looked at memory. We used
amepat to profile memory usage from the Global LPAR (configured with 8VP) and
reconfigured the LPAR based on its recommendation. We subsequently reran the workloads

Virtual processor assignment 4VP 6VP 8VP 12VP

Processor consumption 3.95 5.50 7.60 9.30

Application threads Percentage

1 119%

2 116%

8 150%
Chapter 3. IBM Power Systems virtualization 107

and reprofiled with amepat two further times to gain a stable recommendation. The stable
recommendation reconfigured the LPAR from 8 GB down to 4 GB. However, we did record
approximately 10% TPS reduction of the workloads.

We started with three LPARs, with a total of 12 VP, 24 GB RAM and 180 GB of disk. We
demonstrated that with our given workload, the smaller cases suffered slightly due to
scheduling competition between the WPARs, whereas the larger workload benefitted slightly
from the implementation. The final LPAR configuration had 8 VP, 4 GB RAM and 180 GB of
disk. Of the 120 GB allocated in the secondary volume group, only 82 GB were used to host
the three WPARs. The final configuration had 75% of the original processor, 17% of the RAM
and 45% of the storage. With that greatly reduced footprint, the one LPAR provided 79% of
the original throughput. So throughput has been the trade-off for an increase in resource
efficiency.

3.9.2 WPAR storage

There are a number of ways to present disk storage to an AIX Workload Partition (WPAR).
Depending on the use case, the methods of disk presentation may be different, and have
differing performance characteristics.

There are two types of WPARs described here:

� A rootvg WPAR - This is a WPAR built on an hdisk device that is dedicated to the WPAR.
The WPAR has its own exclusive rootvg on this disk device. It is not possible to have a
versioned WPAR built on a rootvg WPAR.

� A system WPAR - This is a WPAR that has its own root volume group which is built on file
systems and logical volumes created inside the global environment. Where versioned
WPARs are used, they must be of a system WPAR type.

This subsection discusses some different methods of storage presentation grouped into two
areas: Presenting block storage (devices) and file storage (providing access to a file system).

Block
Block storage presentation in this section refers to presenting LUNs, seen as hdisk devices to
an AIX WPAR.

There are two methods to achieve this outcome:

� Taking a LUN (hdisk device) from the AIX global instance and presenting it to a WPAR
using the chwpar command. This can be performed on a system or rootvg WPAR.

� Presenting one or more physical or NPIV fiber channel adapters from the global AIX
instance to the WPAR, again using the chwpar command. It is not possible to present
adapters to a rootvg or versioned WPAR. WPAR mobility is also not possible when
mapping adapters to a WPAR.

Figure 3-28 on page 109 illustrates the different methods of presenting disks to a WPAR.

Note: For further information related to WPARs, refer to Exploiting IBM AIX Workload
Partitions, SG24-7955.
108 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 3-28 WPAR block storage access methods

When mapping a LUN (hdisk) device to a WPAR, the queue_depth and max_transfer settings
can be applied as discussed in 4.3.2, “Disk device tuning” on page 143 with the exception of
the algorithm attribute, which only supports fail_over.

Example 3-39 demonstrates how to take the device hdisk6 from the AIX global instance, and
present it to a WPAR. Once the disk is exported, it is defined in the global AIX and available in
the WPAR.

Example 3-39 WPAR disk device mapping

root@aix1global:/ # lsdev -Cc disk |grep hdisk6
hdisk6 Available 02-T1-01 MPIO FC 2145
root@aix1global:/ # chwpar -D devname=hdisk6 aix71wp
root@aix1global:/ # lsdev -Cc disk |grep hdisk6
hdisk6 Defined 02-T1-01 MPIO FC 2145
root@aix1global:/ # lswpar -D aix71wp
Name Device Name Type Virtual Device RootVG Status

aix71wp hdisk6 disk no EXPORTED
aix71wp /dev/null pseudo EXPORTED
aix71wp /dev/tty pseudo EXPORTED
aix71wp /dev/console pseudo EXPORTED
aix71wp /dev/zero pseudo EXPORTED
aix71wp /dev/clone pseudo EXPORTED
aix71wp /dev/sad clone EXPORTED
aix71wp /dev/xti/tcp clone EXPORTED
aix71wp /dev/xti/tcp6 clone EXPORTED
aix71wp /dev/xti/udp clone EXPORTED
aix71wp /dev/xti/udp6 clone EXPORTED
aix71wp /dev/xti/unixdg clone EXPORTED
aix71wp /dev/xti/unixst clone EXPORTED
aix71wp /dev/error pseudo EXPORTED
aix71wp /dev/errorctl pseudo EXPORTED
aix71wp /dev/audit pseudo EXPORTED
aix71wp /dev/nvram pseudo EXPORTED

AIX LPAR

N
P

IV
 fc

s2

AIX system WPARAIX rootvg WPAR AIX system WPAR

N
P

IV
 fc

s3

rootvg

N
P

IV
 f

cs
2

N
P

IV
 f

cs
3

rootvg rootvgdatavgdatavg

WPAR Device MappingWPAR Device Mapping

Shared Global rootvg

datavg
Chapter 3. IBM Power Systems virtualization 109

aix71wp /dev/kmem pseudo EXPORTED
root@aix1global:/ # clogin aix71wp

* *
* *
* Welcome to AIX Version 7.1! *
* *
* *
* Please see the README file in /usr/lpp/bos for information pertinent to *
* this release of the AIX Operating System. *
* *
* *

Last unsuccessful login: Mon Oct 8 12:39:04 CDT 2012 on ssh from 172.16.253.14
Last login: Fri Oct 12 14:18:58 CDT 2012 on /dev/Global from aix1global

root@aix71wp:/ # lsdev -Cc disk
root@aix71wp:/ # cfgmgr
root@aix71wp:/ # lsdev -Cc disk
hdisk0 Available 02-T1-01 MPIO FC 2145
root@aix71wp:/ #

The other method of presenting block devices to AIX is to present physical adapters to the
partition. These could also be NPIV. The method is exactly the same. It is important that any
SAN zoning is completed prior to presenting the adapters, and device attributes discussed in
4.3.5, “Adapter tuning” on page 150 are configured correctly in the global AIX before the
device is exported. These settings are passed through to the WPAR, and can be changed
inside the WPAR if required after the device is presented.

Example 3-40 demonstrates how to present two NPIV fiber channel adapters (fcs2 and fcs3)
to the WPAR. When the mapping is performed, the fcs devices change to a defined state in
the global AIX instance, and become available in the WPAR. Any child devices such as a LUN
(hdisk device) are available on the WPAR.

Example 3-40 WPAR NPIV mapping

root@aix1global:/ # chwpar -D devname=fcs2 aix71wp
fcs2 Available
fscsi2 Available
sfwcomm2 Defined
fscsi2 Defined
line = 0
root@aix1global:/ # chwpar -D devname=fcs3 aix71wp
fcs3 Available
fscsi3 Available
sfwcomm3 Defined
fscsi3 Defined
line = 0
root@aix1global:/ # lswpar -D aix71wp
Name Device Name Type Virtual Device RootVG Status
--
aix71wp fcs3 adapter EXPORTED
aix71wp fcs2 adapter EXPORTED
aix71wp /dev/null pseudo EXPORTED
aix71wp /dev/tty pseudo EXPORTED
aix71wp /dev/console pseudo EXPORTED
aix71wp /dev/zero pseudo EXPORTED
aix71wp /dev/clone pseudo EXPORTED
aix71wp /dev/sad clone EXPORTED
110 IBM Power Systems Performance Guide: Implementing and Optimizing

aix71wp /dev/xti/tcp clone EXPORTED
aix71wp /dev/xti/tcp6 clone EXPORTED
aix71wp /dev/xti/udp clone EXPORTED
aix71wp /dev/xti/udp6 clone EXPORTED
aix71wp /dev/xti/unixdg clone EXPORTED
aix71wp /dev/xti/unixst clone EXPORTED
aix71wp /dev/error pseudo EXPORTED
aix71wp /dev/errorctl pseudo EXPORTED
aix71wp /dev/audit pseudo EXPORTED
aix71wp /dev/nvram pseudo EXPORTED
aix71wp /dev/kmem pseudo EXPORTED
root@aix1global:/ # clogin aix71wp

* *
* *
* Welcome to AIX Version 7.1! *
* *
* *
* Please see the README file in /usr/lpp/bos for information pertinent to *
* this release of the AIX Operating System. *
* *
* *

Last unsuccessful login: Mon Oct 8 12:39:04 CDT 2012 on ssh from 172.16.253.14
Last login: Fri Oct 12 14:22:03 CDT 2012 on /dev/Global from p750s02aix1

root@aix71wp:/ # lsdev -Cc disk
root@aix71wp:/ # cfgmgr
root@aix71wp:/ # lsdev -Cc disk
hdisk0 Available 03-T1-01 MPIO FC 2145
root@aix71wp:/ # lspath
Enabled hdisk0 fscsi2
Enabled hdisk0 fscsi2
Enabled hdisk0 fscsi2
Enabled hdisk0 fscsi2
Enabled hdisk0 fscsi3
Enabled hdisk0 fscsi3
Enabled hdisk0 fscsi3
Enabled hdisk0 fscsi3
root@aix71wp:/ # lsdev -Cc adapter
fcs2 Available 03-T1 Virtual Fibre Channel Client Adapter
fcs3 Available 03-T1 Virtual Fibre Channel Client Adapter
root@aix71wp:/ #

Versioned WPARs can also have block storage assigned. However, at the time of this writing,
NPIV is not supported. Example 3-41 demonstrates how to map disk to an AIX 5.2 Versioned
WPAR. There are some important points to note:

� SDDPCM must not be installed in the Global AIX for 5.2 Versioned WPARs.

� Virtual SCSI disks are also supported, which can be LUNs on a VIO server or virtual disks
from a shared storage pool.

Example 3-41 Mapping disk to an AIX 5.2 Versioned WPAR

root@aix1global:/ # chwpar -D devname=hdisk8 aix52wp
root@aix1global:/ # lslpp -l *sddpcm*
lslpp: 0504-132 Fileset *sddpcm* not installed.
root@aix1global:/ # clogin aix52wp

Chapter 3. IBM Power Systems virtualization 111

* *
* *
* Welcome to AIX Version 5.2! *
* *
* *
* Please see the README file in /usr/lpp/bos for information pertinent to *
* this release of the AIX Operating System. *
* *
* *

Last unsuccessful login: Thu Mar 24 17:01:03 EDT 2011 on ssh from 172.16.20.1
Last login: Fri Oct 19 08:08:17 EDT 2012 on /dev/Global from aix1global

root@aix52wp:/ # cfgmgr
root@aix52wp:/ # lspv
hdisk0 none None
root@aix52wp:/ # lsdev -Cc disk
hdisk0 Available 03-T1-01 MPIO IBM 2076 FC Disk
root@aix52wp:/ #

File
File storage presentation in this section refers to providing a WPAR access to an existing file
system for I/O operations.

There are two methods for achieving this outcome:

� Creating an NFS export of the file system, and NFS mounting it inside the WPAR.

� Mounting the file system on a directory that is visible inside the WPAR.

Figure 3-29 on page 113 illustrates the different methods of providing file system access to a
WPAR, which the examples in this subsection are based on.
112 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 3-29 WPAR file access mappings

Example 3-42 is a scenario where we have an NFS export on the global AIX instance, and it
is mounted inside the AIX WPAR.

Example 3-42 WPAR access via NFS

root@aix1global:/ # cat /etc/exports
/data1 -sec=sys,rw,root=aix71wp01
root@aix1global:/ # clogin aix71wp01

* *
* *
* Welcome to AIX Version 7.1! *
* *
* *
* Please see the README file in /usr/lpp/bos for information pertinent to *
* this release of the AIX Operating System. *
* *
* *

Last unsuccessful login: Mon Oct 8 12:39:04 CDT 2012 on ssh from 172.16.253.14
Last login: Fri Oct 12 14:13:10 CDT 2012 on /dev/Global from aix1global

root@aix71wp01:/ # mkdir /data
root@aix71wp01:/ # mount aix1global:/data1 /data
root@aix71wp01:/ # df -g /data
Filesystem GB blocks Free %Used Iused %Iused Mounted on
aix1global:/data1 80.00 76.37 5% 36 1% /data
root@aix71wp01:/ #

In the case that a file system on the global AIX instance requires WPAR access, the
alternative is to create a mount point that is visible inside the WPAR rather than using NFS.

AIX 7.1 LPAR

AIX system WPAR AIX system WPAR

rootvg

aix71wp01 aix71wp02

jfs2 Filesystem (/data1)

Logical Volume

/data

NFS mounted on /data

/data

FS monuted via
mount -v namefs to
mount inside WPAR

jfs2 Filesystem (/data2)

Logical Volume

rootvg

Shared Global rootvg
Chapter 3. IBM Power Systems virtualization 113

If our WPAR was created on for instance /wpars/aix71wp02, we could mount a file system on
/wpars/aix71wp02/data2 and our WPAR would see only a /data2 mount point.

If the file system or directories inside the file system are going to be shared with multiple
WPARs, it is good practice to create a Name File System (NameFS). This provides the
function to mount a file system on another directory.

When the global AIX instance is started, it is important that the /wpars/.../ file systems are
mounted first, before any namefs mounts are mounted. It is also important to note that
namefs mounts are not persistent across reboots.

Example 3-43 demonstrates how to take the file system /data2 on the global AIX instance
and mount it as /data2 inside the WPAR aix71wp02.

Example 3-43 WPAR access via namefs mount

root@aix1global:/ # df -g /data2
Filesystem GB blocks Free %Used Iused %Iused Mounted on
/dev/data2_lv 80.00 76.37 5% 36 1% /data
root@aix1global:/ # mkdir /wpars/aix71wp02/data
root@aix1global:/ # mount -v namefs /data2 /wpars/aix71wp02/data
root@aix1global:/ # df -g /wpars/aix71wp/data
Filesystem GB blocks Free %Used Iused %Iused Mounted on
/data2 80.00 76.37 5% 36 1% /wpars/aix71wp02/data
root@aix1global:/ # clogin aix71wp02

* *
* *
* Welcome to AIX Version 7.1! *
* *
* *
* Please see the README file in /usr/lpp/bos for information pertinent to *
* this release of the AIX Operating System. *
* *
* *

Last unsuccessful login: Mon Oct 8 12:39:04 CDT 2012 on ssh from 172.16.253.14
Last login: Fri Oct 12 14:23:17 CDT 2012 on /dev/Global from aix1global

root@aix71wp02:/ # df -g /data
Filesystem GB blocks Free %Used Iused %Iused Mounted on
Global 80.00 76.37 5% 36 1% /data
root@aix71wp02:/ #

To ensure that the NameFS mounts are recreated in the event that the global AIX is rebooted,
there must be a process to mount them when the WPAR is started. To enable the mount to be
created when the WPAR is started, it is possible to have a script run when the WPAR is
started to perform this action.

Example 3-44 demonstrates how to use the chwpar command to have the aix71wp execute
the script /usr/local/bin/wpar_mp.sh when the WPAR is started. The script must exist and
be executable before modifying the WPAR.

Example 3-44 Modify the WPAR to execute a script when it starts

root@aix1global:/ # chwpar -u /usr/local/bin/wpar_mp.sh aix71wp
root@aix1global:/ #
114 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 3-45 demonstrates how to confirm that the script will be executed the next time the
WPAR is started.

Example 3-45 Confirming the WPAR will execute the script

root@aix1global:/ # lswpar -G aix71wp
===
aix71wp - Active
===
Type: S
RootVG WPAR: no
Owner: root
Hostname: aix71wp
WPAR-Specific Routing: no
Virtual IP WPAR:
Directory: /wpars/aix71wp
Start/Stop Script: /usr/local/bin/wpar_mp.sh
Auto: no
Private /usr: yes
Checkpointable: no
Application:

OStype: 0
Cross-WPAR IPC: no
Architecture: none
UUID: 1db4f4c2-719d-4e5f-bba8-f5e5dc789732
root@aix1global:/ #

Example 3-46 is a sample script to offer an idea of how this can be done. The script mounts
/data on /wpars/aix71wp/data to provide the WPAR aix71wp access to the /data file system.

Example 3-46 Sample mount script wpar_mp.sh

#!/bin/ksh
#set -xv

WPARNAME=aix71wp
FS=/data # Mount point in global AIX to mount
WPARMP=/wpars/${WPARNAME}${FS}

Check if the filesystem is mounted in the global AIX
if [$(df -g |awk '{print $7}' |grep -x $FS |wc -l) -eq 0]
then
 echo "Filesystem not mounted in the global AIX... exiting"
 exit 1
else
 echo "Filesystem is mounted in the global AIX... continuing"
fi

Check the WPAR mount point exists
if [-d $WPARMP]
then
 echo "Directory to mount on exists... continuing"
else
 echo "Creating directory $WPARMP"
 mkdir -p $WPARMP
fi
Chapter 3. IBM Power Systems virtualization 115

Check if the namefs mount is already there
if [$(df -g |awk '{print $7}' |grep -x $WPARMP |wc -l) -eq 1]
then
 echo "The namefs mount is already there... nothing to do"
 exit 0
fi

Create the namefs mount
echo "Mounting $FS on $WPARMP..."
mount -v namefs $FS $WPARMP
if [$? -eq 0]
then
 echo "ok"
 exit 0
else
 echo "Something went wrong with the namefs mount... investigation required."
 exit 99
fi

Example 3-47 demonstrates the WPAR being started, and the script being executed.

Example 3-47 Starting the WPAR and verifying execution

root@aix1global:/ # startwpar -v aix71wp
Starting workload partition aix71wp.
Mounting all workload partition file systems.
Mounting /wpars/aix71wp
Mounting /wpars/aix71wp/admin
Mounting /wpars/aix71wp/home
Mounting /wpars/aix71wp/opt
Mounting /wpars/aix71wp/proc
Mounting /wpars/aix71wp/tmp
Mounting /wpars/aix71wp/usr
Mounting /wpars/aix71wp/var
Mounting /wpars/aix71wp/var/adm/ras/livedump
Loading workload partition.
Exporting workload partition devices.
sfwcomm3 Defined
fscsi3 Defined
line = 0
sfwcomm2 Defined
fscsi2 Defined
line = 0
Exporting workload partition kernel extensions.
Running user script /usr/local/bin/wpar_mp.sh.
Filesystem is mounted in the global AIX... continuing
Directory to mount on exists... continuing
Mounting /data on /wpars/aix71wp/data...
ok
Starting workload partition subsystem cor_aix71wp.
0513-059 The cor_aix71wp Subsystem has been started. Subsystem PID is 34472382.
Verifying workload partition startup.
Return Status = SUCCESS.
root@aix1global:/ #

The case may also be that concurrent I/O is required inside the WPAR but not across the
whole file system in the global AIX instance.
116 IBM Power Systems Performance Guide: Implementing and Optimizing

Using NameFS provides the capability to mount a file system or just a directory inside the file
system with different mount points and optionally with Direct I/O (DIO) or Concurrent I/O
(CIO). For examples using DIO and CIO, refer to 4.4.3, “File system best practice” on
page 163.

Example 3-48 demonstrates how to mount the /data2 file system inside the global AIX
instance, as /wpars/aix71wp02/data with CIO.

Example 3-48 NameFS mount with CIO

root@aix1global:/ # mount -v namefs -o cio /data2 /wpars/aix71wp02/data
root@aix1global:/ # clogin aix71wp02

* *
* *
* Welcome to AIX Version 7.1! *
* *
* *
* Please see the README file in /usr/lpp/bos for information pertinent to *
* this release of the AIX Operating System. *
* *
* *

Last unsuccessful login: Mon Oct 8 12:39:04 CDT 2012 on ssh from 172.16.253.14
Last login: Fri Oct 12 14:23:17 CDT 2012 on /dev/Global from aix1global

root@aix71wp02:/ # df -g /data
Filesystem GB blocks Free %Used Iused %Iused Mounted on
Global 80.00 76.37 5% 36 1% /data
root@aix71wp02:/ # mount |grep data
 Global /data namefs Oct 15 08:07 rw,cio
root@aix71wp02:/ #

Conclusion
There are multiple valid methods of presenting block or file storage to an AIX WPAR. From a
performance perspective, our findings were as follows:

� For block access using NPIV provided better throughput, due to being able to take
advantage of balancing I/O across all paths for a single LUN, and being able to queue I/O
to the full queue depth of the fcs adapter device. From a management perspective, WPAR
mobility was not possible and some additional zoning and LPAR configuration was
required for NPIV to be configured. It is also important to note that if you are using
Versioned WPARs, adapter mappings are not supported.

� For file access, if the file system exists on the global AIX instance mounting the file system
on the /wpars/<wpar_name>/ directory or using NameFS provided better performance
than NFS because we were able to bypass any TCP overhead of NFS and provide access
to mount options such as DIO and CIO.

3.10 LPAR suspend and resume best practices

This PowerVM feature was introduced for POWER7-based servers with VIOS 2.2 Fixpack 24
Service Pack1. It utilizes elements of both Logical Partition Mobility (LPM) and Active Memory
Sharing (AMS); those familiar with these technologies appreciate the similarities. Other
sources of documentation highlight the use of this feature as a means to temporarily make
processor and memory resource available, by suspending given LPARs. The method of
suspend and resume is offered as a more preferable approach than a traditional shutdown
Chapter 3. IBM Power Systems virtualization 117

and restart route, because you do not need to shut down or restart your hosted applications.
This saves actual administrator interaction and removes any associated application startup
times. The feature is of similar concept to those found on the x86 platform, in that the
operating system is quiesced and the running memory footprint is stored to disk and replayed
during the resume activity.

We decided to investigate leveraging Suspend/Resume for another reason: to verify whether
the feature could be used in the case where the physical hardware (CEC) needed power
cycling. From looking at existing documentation, we could not conclude whether this was
actually an applicable use of Suspend/Resume.

In our test case, Suspend/Resume was configured to use a storage device provided by a pair
of redundant VIOS LPARs. We performed a controlled shutdown of some hosted client LPARs
and suspended others. Finally the pair of VIOS were shut down in a controlled manner and
the CEC was powered off from the HMC.

After the CEC and VIOS LPARs were powered online, the LPARs we suspended were still
listed as being in a suspended state—proving that the state survived the power cycle. We
were able to successfully resume the LPARs, making them available in the previous state.

We observed that the LPAR does actually become available (in the sense a console will
display login prompt) prior to the HMC completing the Resume activity. In our case, we could
actually log in to the LPAR in question. However, we soon appreciated what was occurring
when the system uptime suddenly jumped from seconds to days.

The time required to suspend and resume a given LPAR depends on a number of factors.
Larger and more busier LPARs take longer to suspend or resume. The speed of the storage
hosting the paging device is also an obvious factor.

Our conclusions were that Suspend/Resume could successfully be leveraged for the power
cycle scenario. Where clients host applications with significant startup and shutdown times it
may be an attractive feature to consider.

Note: Although perhaps obvious from the AMS reference above, it should be appreciated
that only client LPARs are candidates for suspension. VIOS LPARs cannot be suspended
and need to be shut down and rebooted as per normal.

Note: While the LPAR may respond prior to the HMC completing the resume activities, do
not attempt to use the LPAR until these activities have finished. The HMC will be in the
process of replaying the saved state to the running LPAR.
118 IBM Power Systems Performance Guide: Implementing and Optimizing

Chapter 4. Optimization of an IBM AIX
operating system

In this chapter we discuss performance considerations on AIX. We also describe some basic
general tuning for AIX. Some tuning may not apply to all workloads. It is important to check
best practices documentation and guidelines for each type of workload (database, web
server, fileserver) and follow the recommendations for each product.

We show parameters that can be changed in AIX and features that can be enabled:

� Processor folding, Active System Optimizer, and simultaneous multithreading

� Memory

� I/O device tuning

� AIX LVM and file systems

� Network

4

© Copyright IBM Corp. 2013. All rights reserved. 119

4.1 Processor folding, Active System Optimizer, and
simultaneous multithreading

In this section we discuss some concepts related to processor performance in AIX.

4.1.1 Active System Optimizer

Active System Optimizer (ASO) is an AIX feature introduced in AIX 6.1 TL7 and AIX 7.1 TL1,
which monitors and dynamically optimizes the system. ASO needs POWER7 hardware
running in POWER7 mode. For more information, refer to 6.1.2, “IBM AIX Dynamic System
Optimizer” on page 288.

4.1.2 Simultaneous multithreading (SMT)

First referred to as SMT with the introduction of POWER5. Prior to that, a previous incarnation
of SMT was known as HMT (or hardware multithreading). There are many sources of
information regarding SMT, some of which we reference later. This section complements
these existing sources by highlighting some key areas and illustrating some scenarios when
hosting them on the POWER7 platform.

POWER5, POWER6 and POWER7
The implementation of SMT has matured and evolved through each generation. It is important
to understand which SMT component is provided by a given platform, but equally how it
differs from the implementations in other generations. Such understanding can be critical
when planning to migrate existing workloads from older hardware onto POWER7.

For example, both POWER5 and POWER6 provide SMT2 (although remember that prior to
POWER7, it was just referred to as SMT). However, while there is no difference in naming to
suggest otherwise, the implementation of SMT2 is significantly different between the two
platforms. Similarly, SMT4 is not simply a parallel implementation of SMT2.

A confusion can easily arise between the acronyms of SMT and Symmetric Multi Processing
(SMP). As we demonstrate in “SMT4” on page 120, inefficiencies can be introduced by
confusing the two.

For a detailed comparison of the three implementations of SMT, refer to 2.14.1 of IBM
PowerVM Introduction and Configuration, SG24-7940.

SMT4
An important characteristic of SMT4 is that the four hardware threads are ordered in a priority
hierarchy. That is, for each core or virtual processor, there is one primary hardware thread,
one secondary hardware thread, and two tertiary hardware threads in SMT4 mode. This
means that work will not be allocated to the secondary threads until consumption of the
primary threads exceeds a threshold (controlled by schedo options); similarly the tertiary
threads will not have work scheduled to them until enough workload exists to drive the
primary and secondary threads. This priority hierarchy provides best raw application
throughput on POWER7 and POWER7+. Thus the default AIX dispatching behavior is to
dispatch across primary threads and then pack across the secondary and tertiary threads.

However, it is possible to negate or influence the efficiency offered by SMT4, through
suboptimal LPAR profile configuration. Also, the default AIX dispatching behavior can be
changed via schedo options, which are discussed in 4.1.4, “Scaled throughput” on page 124.
120 IBM Power Systems Performance Guide: Implementing and Optimizing

An existing workload is hosted on a POWER6-based LPAR, running AIX 6.1 TL02. The
uncapped LPAR is configured to have two virtual processors (VP) and 4 GB of RAM. The
LPAR is backed up and restored to a new POWER7 server and the LPAR profile is recreated
with the same uncapped/2 VP settings as before. All other processor settings in the new
LPAR profile are default.

At a later date, the POWER7-based LPAR is migrated from AIX6.1 TL02 to AIX6.1 TL07. On
reboot, the LPAR automatically switches from SMT2 to SMT4 due to the higher AIX level
allowing the LPAR to switch from POWER6+™ to POWER7 compatibility mode.

To illustrate this we used a WMB workload. Figure 4-1 shows how the application is only
using two of the eight available threads.

Figure 4-1 WMB workload with two VPs and SMT4

Reconfiguring the LPAR to have only a single VP (Figure 4-2) shows that the WMB workload
is using the same amount of resource, but now more efficiently within one core. In our
example, we were able to achieve a comparable throughput with one VP as with two VPs. AIX
would only have to manage two idle threads, not six, so the resource allocation would be
more optimal in that respect.

Figure 4-2 WMB workload with one VP and SMT4

Scaling the WMB workload to produce double the footprint in the same processor constraints
again demonstrated similar efficient distribution. Figure 4-3 on page 122 illustrates the
difference in consumption across the four SMT threads.

Note: The following scenario illustrates how inefficiencies can be introduced. There are
other elements of PowerVM such as processor folding, Active System Optimizer (ASO),
and power saving features that can provide compensation against such issues.
Chapter 4. Optimization of an IBM AIX operating system 121

Figure 4-3 Increased WMB workload with one VP and SMT4

However, the throughput recorded using this larger footprint was around 90% less with one
VP than with two VPs because the greater workload consumed the maximum capacity at
some times. Remember that even if an LPAR is configured as uncapped, the amount of extra
entitlement it can request is limited by the number of VPs. So one VP allows up to 1.0 units of
allocation.

We observed that other smaller workloads could not take advantage of the larger number of
SMT threads, thus it was more efficient to reconfigure the LPAR profile to have fewer VPs
(potential example of our NIM server). Allocating what is required is the best approach
compared to over-allocating based on a legacy viewpoint. Fewer idle SMT threads or VPs is
less overhead for the hypervisor too. Just because your old POWER5-based LPAR had four
dedicated processors, it does not always follow that your POWER7-based LPAR requires the
same.

Where workloads or LPARs will be migrated from previous platform generations, spending
time evaluating and understanding your workload footprint is important; investing time
post-migrating is equally important. Regular monitoring of LPAR activity will help build a
profile of resource usage to help assess the efficiency of your configuration and also will allow
detection of footprint growth. While it is common for an LPAR to be allocated too many
resources, it is also common for footprint growth to go undetected.

It is primarily beneficial in commercial environments where the speed of an individual
transaction is not as important as the total number of transactions that are performed.
Simultaneous multithreading is expected to increase the throughput of workloads with large
or frequently changing working sets, such as database servers and web servers.

Workloads that do not benefit much from simultaneous multithreading are those in which the
majority of individual software threads uses a large amount of any specific resource in the
processor or memory. For example, workloads that are floating-point intensive are likely to
gain little from simultaneous multithreading and are the ones most likely to lose performance.

AIX allows you to control the mode of the partition for simultaneous multithreading with the
smtctl command. By default, AIX enables simultaneous multithreading.

In Example 4-1, in the smtctl output, we can see that SMT is enabled and the mode is SMT4.
There are two virtual processors, proc0 and proc4, and four logical processors associated
with each virtual one, giving a total of eight logical processors.

Example 4-1 Verifying that SMT is enabled and what the mode is

smtctl

This system is SMT capable.
This system supports up to 4 SMT threads per processor.
122 IBM Power Systems Performance Guide: Implementing and Optimizing

SMT is currently enabled.
SMT boot mode is set to enabled.
SMT threads are bound to the same virtual processor.

proc0 has 4 SMT threads.
Bind processor 0 is bound with proc0
Bind processor 1 is bound with proc0
Bind processor 2 is bound with proc0
Bind processor 3 is bound with proc0

proc4 has 4 SMT threads.
Bind processor 4 is bound with proc4
Bind processor 5 is bound with proc4
Bind processor 6 is bound with proc4
Bind processor 7 is bound with proc4

4.1.3 Processor folding

On a shared-processor LPAR, AIX monitors the utilization of virtual processors. It watches
each virtual processor and the LPAR as a whole. By default AIX will take action when the
aggregate utilization drops below 49% (schedo option vpm_fold_threshold). When current
load drops below this threshold, AIX will start folding away virtual processors to make more
efficient use of fewer resources. The opposite reaction occurs when the workload increases
and breaches the 49% threshold, in which case AIX dynamically unfolds virtual processors to
accommodate the increased load.

The aim of this feature is to improve efficiency of thread and virtual processor usage within
the LPAR. The folding and unfolding encourages the LPAR to make best use of its processing
resources. Improved performance is achieved by attempting to reduce cache misses in the
physical processors by efficiently distributing the processes.

Thus, processor folding is a feature introduced in AIX 5.3 ML3 that allows the kernel
scheduler to dynamically increase and decrease the use of virtual processors. During low
workload demand, some virtual processors are deactivated. Every second, the kernel
scheduler evaluates the number of virtual processors that should be activated to
accommodate the physical utilization of the partition.

When virtual processors are deactivated, they are not removed from the partition as with
dynamic LPAR. The virtual processor is no longer a candidate to run on or receive unbound
work; however, it can still run bound jobs. The number of online logical processors and online
virtual processors that are visible to the user or applications does not change. There are no
impacts to the middleware or the applications running on the system.

Some benefits of processor folding are:

� Better processor affinity

� Less overhead to the hypervisor due to lower number of context switches

� Less virtual processors being dispatched in physical processors implies more physical
processors available to other partitions

� Improved energy resources consumption when the processors are idle
Chapter 4. Optimization of an IBM AIX operating system 123

Processor folding is enabled by default. In specific situations where you do not want to have
the system folding and unfolding all the time, the behavior can be controlled using the schedo
command to modify the vpm_xvcpus tunable.

To determine whether or not processor folding is enabled, use the command shown in
Example 4-2.

Example 4-2 How to check whether processor folding is enabled

schedo -o vpm_xvcpus
vpm_xvcpus = 0

If vpm_xvcpus is greater than or equal to zero, processor folding is enabled. Otherwise, if it is
equal to -1, folding is disabled. The command to enable is shown in Example 4-3.

Example 4-3 How to enable processor folding

schedo -o vpm_xvcpus=0
Setting vpm_xvcpus to 0

Each virtual processor can consume a maximum of one physical processor. The number of
virtual processors needed is determined by calculating the sum of the physical processor
utilization and the value of the vpm_xvcpus tunable, as shown in the following equation:

Number of virtual processors needed = roundup (physical processor utilization) +
vpm_xvcpus

If the number of virtual processors needed is less than the current number of enabled virtual
processors, a virtual processor is disabled. If the number of virtual processors needed is
greater than the current number of enabled virtual processors, a disabled virtual processor is
enabled. Threads that are attached to a disabled virtual processor are still allowed to run on
it.

Currently, there is no way to monitor the folding behavior on an AIX partition. The nmon tool
does some attempt to track VP folding behavior based on the measured processor utilization
but again, that is an estimation, not a value reported by any system component.

4.1.4 Scaled throughput

This setting is an alternative dispatcher scheduling mechanism introduced with AIX 6.1 TL08
and AIX 7.1 TL02; the new logic affects how AIX utilizes SMT threads and directly dictates
how and when folded VPs will be unfolded. This feature was added based on client
requirements and is controlled by a schedo tunable. Therefore, it is enabled on an LPAR, by
LPAR basis.

The implication of enabling this tunable is that AIX will utilize all SMT threads on a given VP
before unfolding additional VPs. The characteristics we observed during tests are best
described as a more scientific, controlled approach to what we achieved by forceably
reducing VP allocation in “SMT4” on page 120.

Important: Folding is available for both dedicated and shared mode partitions. On AIX 7.1,
folding is disabled for dedicated-mode partitions and enabled for shared-mode.
124 IBM Power Systems Performance Guide: Implementing and Optimizing

The scaled_throughput_mode tunable has four settings: 0, 1, 2 and 4. A value of 0 is the
default and disables the tunable. The three other settings enable the feature and dictate the
desired level of SMT exploitation (that is SMT1, SMT2, or SMT4).

We tested the feature using our WebSphere Message Broker workload, running on an AIX
7.1 TL02 LPAR configured with four VPs. Two sizes of Message Broker workload were
profiled to see what difference would be observed by running with two or four application
threads.

Table 4-1 Message Broker scaled_throughput_mode results

Table 4-1details the statistics from the eight iterations. In both cases the TPS declined as
utilization increased. In the case of the 4-thread workload the trade-off was a 41% decline in
throughput against an 89% increase in core efficiency. Whereas for the 2-thread workload it
was a 25% decline in throughput against a 47% increase in core efficiency.

So the benefit of implementing this feature is increased core throughput, because AIX
maximizes SMT thread utilization before dispatching to additional VPs. But this increased
utilization is at the expense of overall performance. However, the tunable will allow
aggressively dense server consolidation; another potential use case would be to implement
this feature on low load, small footprint LPARs of a noncritical nature, reducing the hypervisor
overhead for managing the LPAR and making more system resources available for more
demanding LPARs.

4.2 Memory

Similar to other operating systems, AIX utilizes virtual memory. This allows the memory
footprint of workloads to be greater than the physical memory allocated to the LPAR. This
virtual memory is composed of several devices with different technology:

� Real Memory - Composed of physical memory DIMMs (SDRAM or DDRAM)

� Paging device - One or more devices hosted on storage (SATA, FC, SSD, or SAN)

Size of virtual memory = size of real memory + size of paging devices

All memory pages allocated by processes are located in real memory. When the amount of
free physical memory reaches a certain threshold, the virtual memory manager (VMM)
through the page-replacement algorithm will search for some pages to be evicted from RAM
and sent to paging devices (this operation is called paging out). If a program needs to access

0 1 2 4

TPS for four
WMB threads

409.46 286.44 208.08 243.06

Perf per core 127.96 149.18 208.08 243.06

TPS for two
WMB threads

235.00 215.28 177.55 177.43

Perf per core 120.51 130.47 177.55 177.43

Note: Use of the scaled_throughput_mode tunable should only be implemented after
understanding the implications. While it is not a restricted schedo tunable, we strongly
suggest only using it under the guidance of IBM Support.
Chapter 4. Optimization of an IBM AIX operating system 125

a memory page located on a paging device (hard disk), this page needs to be first copied
back to the real memory (paging in).

Because of the technology difference between real memory (RAM) and paging devices (hard
disks), the time to access a page is much slower when it is located on paging space and
needs a disk I/O to be paged in to the real memory. Paging activity is one of the most
common reasons for performance degradation.

Paging activity can be monitored with vmstat (Example 4-4) or nmon (Figure 4-4).

Example 4-4 Monitoring paging activity with vmstat

{D-PW2k2-lpar1:root}/ #vmstat -w 2
kthr memory page faults cpu
------- --------------------- ------------------------------------ ------------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 1 0 12121859 655411 0 0 0 0 0 0 2 19588 3761 4 0 95 0
 2 0 12387502 389768 0 0 0 0 0 0 1 13877 3731 4 0 95 0
 1 0 12652613 124561 0 46 0 0 0 0 48 19580 3886 4 1 95 0
 3 9 12834625 80095 0 59 54301 81898 586695 0 13634 9323 14718 3 10 78 9
 2 13 12936506 82780 0 18 50349 53034 52856 0 16557 223 19123 2 6 77 16
 1 18 13046280 76018 0 31 49768 54040 53937 0 16139 210 20793 2 6 77 16
 2 19 13145505 81261 0 33 51443 48306 48243 0 16913 133 19889 1 5 77 17

With vmstat, the paging activity can be monitored by looking at the column po (number of
pagings out per second) and pi (number of pagings in per second).

Figure 4-4 Monitoring paging activity with nmon

In Figure 4-4, we started nmon in interactive mode. We can monitor the number of paging in
and out by looking at the values in to Paging Space in and out. This number is given in pages
per second.

4.2.1 AIX vmo settings

The AIX virtual memory is partitioned into segments sized 256 MB (default segment size) or
1 TB. Note that 1 TB segment size is only used for 16 GB huge pages, and is similar but a
different concept from what is mentioned in 4.2.3, “One TB segment aliasing” on page 129,
which still uses a 256 MB segment size.

Depending on the backing storage type, the virtual memory segments can be classified into
three types, as described in Table 4-2.

Table 4-2 VMM segments classification depending on backing storage

Segment type Definition

Persistent The pages of persistent segments have permanent storage locations on
disk (JFS file systems). The persistent segments are used for file
caching of JFS file systems.
126 IBM Power Systems Performance Guide: Implementing and Optimizing

Computation memory, also known as computational pages, consists of the pages that belong
to working segments or program text (executable files or shared libary files) segments.

File memory, also known as file pages or non-computation memory, consists of the remaining
pages. These are usually pages belonging to client segments or persistent segments.

Some AIX tunable parameter can be modified via the vmo command to change the behavior of
the VMM such as:

� Change the threshold to start or stop the page-replacement algorithm.
� Give more or less priority for the file pages to stay in physical memory compared to

computational pages.

Since AIX 6.1, the default values of some vmo tunables were updated to fit most workloads.
Refer to Table 4-3.

Table 4-3 vmo parameters: AIX 5.3 defaults vs. AIX 6.1 defaults

With these new parameters, VMM gives more priority to the computational pages to stay in
the real memory and avoid paging. When the page replacement algorithm starts, it steals only
the file pages as long as the percentage of file pages in memory is above minperm%,
regardless of the repage rate. This is controlled by the vmo parameter lru_file_repage=0
and it guarantees 97% memory (minperm%=3) for computational pages. If the percentage of
file pages drops below minperm%, both file and computational pages might be stolen.

The memory percentage used by the file pages can be monitored with nmon by looking at the
value numperm, as shown in Figure 4-4 on page 126.

The page_steal_method=1 specification improves the efficiency of the page replacement
algorithm by maintaining several lists of pages (computational pages, file pages, and
workload manager class). When used with lru_file_repage=0, the page replacement

Client The client segments also have permanent storage locations, which are
backed by a JFS2, CD-ROM file system, or remote file systems such as
NFS. The client segments are used for file caching of those file systems.

Working Working segments are transitory and exist only during their use by a
process. They have no permanent disk storage location and are stored
on paging space when they are paged out.
Typical working segments include process private segments (data, BSS,
stack, u-block, heap), shared data segments (shmat or mmap), shared
libary data segments, and so on. The kernel segments are also
classified as working segments.

AIX 5.3 defaults AIX 6.1/7.1 defaults

minperm% = 20
maxperm% = 80
maxclient% = 80
strict_maxperm = 0
strict_maxclient = 1
lru_file_repage = 1
page_steal_methode = 0

minperm% = 3
maxperm% = 90
maxclient% = 90
strict_maxperm = 0
strict_maxclient = 1
lru_file_repage = 0
page_steal_methode = 1

Note: In the new version of AIX 7.1, lru_file_repage=0 is still the default, but this
parameter disappears from the vmo tunables and cannot be changed any more.

Segment type Definition
Chapter 4. Optimization of an IBM AIX operating system 127

algorithm can directly find file pages by looking at the corresponding list instead of searching
in the entire page frame table. This reduces the number of scanned pages compared to freed
pages (scan to free ratio).

The number of pages scanned and freed can be monitored in vmstat by looking at the sr
column (pages scanned) and fr column (pages freed). In nmon, these values are reported by
Pages Scans and Pages Steals. Usually, with page_steal_method=1, the ratio

Pages scanned to Pages freed should be between 1 and 2.

4.2.2 Paging space

Paging space or swap space is a special type of logical volume that is used to accommodate
pages from RAM. This allows the memory footprint of workloads and processes to be greater
than the physical memory allocated to the LPAR. When physical memory utilization reaches a
certain threshold, the virtual memory manager (VMM) through the page-replacement
algorithm will search for some pages to be evicted from RAM and sent to paging devices. This
is called a page-out. When a program makes reference to a page, that page needs to be in
real memory. If that page is on disk, a page-in must happen. This delays the execution of the
program because it requires disk I/O, which is time-consuming. So it is important to have
adequate paging devices.

The best situation is, where possible, to run the workload in main memory. However, it is
important to have well dimensioned and good performing paging space to ensure that your
system has the best performance when paging is inevitable. Note that some applications
have a requirement on paging space, regardless of how much physical RAM is allocated.
Therefore, performance of paging space is still valid today as it was previously.

Paging space size considerations can be found at:

http://www.ibm.com/developerworks/aix/library/au-aix7memoryoptimize3/

� Look for any specific recommendation from software vendors. Products such as IBM DB2
and Oracle have minimum requirements.

� Monitor your system frequently after going live. If you see that you are never approaching
50 percent of paging space utilization, do not add the space.

� A more sensible rule is to configure the paging space to be half the size of RAM plus 4 GB,
with an upper limit of 32 GB.

Performance considerations for paging devices:

� Use multiple paging spaces.

� Use as many physical disks as possible.

� Avoid to use a heavily accessed disk.

� Use devices of the same size.

Conclusion: On new systems (AIX 6.1 and later), default parameters are usually good
enough for the majority of the workloads. If you migrate your system from AIX 5.3, undo
your old changes to vmo tunables indicated in /etc/tunables/nextboot, restart with the
default, and change only if needed.

If you still have high paging activity, go through the perfpmr process (“Trace tools and
PerfPMR” on page 316), and do not tune restricted tunables unless guided by IBM
Support.
128 IBM Power Systems Performance Guide: Implementing and Optimizing

http://www.ibm.com/developerworks/aix/library/au-aix7memoryoptimize3/

� Use a striped configuration with 4 KB stripe size.

� Use disks from your Storage Area Network (SAN).

4.2.3 One TB segment aliasing

One TB segment aliasing or Large Segment Aliasing (LSA) improves performance by using
1-TB segment translations for shared memory segments. 64-bit applications with large
memory footprint and low spatial locality are likely to benefit from this feature. Both directed
and undirected shared memory attachments are eligible for LSA promotion.

In this section, we introduce how 1-TB segment aliasing works, when to enable it, and how to
observe the benefits of using it.

Introduction to 1-TB segment aliasing
To understand how LSA works, you need to get some knowledge about 64-bit memory
addressing.

Virtual address space of 64-bit applications
64-bit architecture has an addressable range of 2**64, from 0x0000000000000000 to
0xFFFFFFFFFFFFFFFF, which is 16 exabytes (EB) in size. The address space is organized
in segments, and there are 2**36 segments, each segment being 256 MB in size.

Table 4-4 shows the 64-bit effective address space.

Table 4-4 64-bit effective address space

Segment Number (hex) Segment usage

0x0000_0000_0 System call tables, kernel text

0x0000_0000_1 Reserved for system use

0x0000_0000_2 Reserved for user mode loader (process private
segment)

0x0000_0000_3 - 0x0000_0000_C shmat or mmap use

0x0000_0000_D Reserved for user mode loader

0x0000_0000_E shmat or mmap use

0x0000_0000_F Reserved for user mode loader

0x0000_0001_0 - 0x06FF_FFFF_F Application text, data, BSS and heap

0x0700_0000_0 - 0x07FF_FFFF_F Default application shmat and mmap area if
1-TB Segment Aliasing (LSA) is not enabled.
Directed application shmat and mmap area if
LSA is enabled.

0x0800_0000_0 - 0x08FF_FFFF_F Application explicit module load area

0x0900_0000_0 - 0x09FF_FFFF_F Shared library text and per-process shared
library data

0x0A00_0000_0 - 0x0AFF_FFFF_F Default (undirected) shmat and mmap area if
LSA is enabled

0x0B00_0000_0 - 0x0EFF_FFFF_F Reserved for future use

0x0F00_0000_0 - 0x0FFF_FFFF_F Application primary thread stack
Chapter 4. Optimization of an IBM AIX operating system 129

64-bit hardware address resolution
Figure 4-5 gives an explanation of how the effective address of one process is translated to a
virtual address, and finally the real hardware address in AIX.

As mentioned in “Virtual address space of 64-bit applications” on page 129, each 64 bit
effective address uses the first 36 bits as the effective segment ID (ESID), and then it is
mapped to a 52-bit virtual segment ID (VSID) using a segment lookaside buffer (SLB) or a
segment table (STAB).

After the translation, we get a 52-bit VSID. Combine this VSID with the 16-bit page index, and
we get a 68-bit virtual page number. Then the operating system uses TLB and other tables to
translate the virtual page number into a real page number, which is combined with the 12-bit
page offset to eventually form a 64-bit real address.

Figure 4-5 64-bit hardware address resolution

ESID and VSID mapping can be found with the svmon command, as shown in Example 4-5.
Note that the VSID is unique in the operating system, while different processes may have the
same ESID.

Example 4-5 VSID and ESID mapping in svmon

#svmon -P 9437198

0x1000_0000_0 - 0XEFFF_FFFF_F Reserved for future use

0xF000_0000_0 - 0xFFFF_FFFF_F Additional kernel segments

Segment Number (hex) Segment usage

Segment # Virtual Page Index Page Offset

Segment
Lookaside

Buffer

Segment
Table

(STAB)

36

52
Segment ID

16

Translation Look-Aside Buffer (TLB)
Hash Anchor Table (HAT)
Hardware Page Frame Table (PFT)
Software Page Frame Table

Virtual Page Number 68

52Real Page Number

12
Page
Offset

64-bit Real Address

80-bit Virtual Address
130 IBM Power Systems Performance Guide: Implementing and Optimizing

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 9437198 lsatest 24990 9968 0 24961 Y N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 11374 0 0 11345
 m 64 KB 851 623 0 851

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 20002 0 work kernel segment m 671 620 0 671
 9d001d 90000000 work shared library text m 175 0 0 175
 50005 9ffffffd work shared library sm 2544 0 0 2544
 9f001f 90020014 work shared library s 166 0 0 166
 840fa4 70000004 work default shmat/mmap sm 135 0 0 135
 890fc9 70000029 work default shmat/mmap sm 135 0 0 135
 9d0efd 70000024 work default shmat/mmap sm 135 0 0 135
 8c0f6c 70000012 work default shmat/mmap sm 135 0 0 135
 9b0edb 70000008 work default shmat/mmap sm 135 0 0 135
 980f38 7000000d work default shmat/mmap sm 135 0 0 135
 8e0f0e 7000003b work default shmat/mmap sm 135 0 0 135
 870ec7 70000036 work default shmat/mmap sm 135 0 0 135
 9504b5 7000002d work default shmat/mmap sm 135 0 0 135

Hardware limits on SLB entries and benefits of LSA
Now you know that SLB is used to translate ESID to VSID when doing address translation.
Because SLB is in processor cache, the translation will be very efficient if we hit the SLB
when accessing memory.

However, POWER6 and POWER7 processor has limited SLB entries, as follows:

� POWER6

– SLB has 64 entries
– 20 reserved for the kernel
– 44 available for user processes, which yields 11 GB of accessible memory
– Many client workloads do not fit into 11 GB

� POWER7

– SLB has 32 entries; architectural trend towards smaller SLB sizes
– 20 still reserved for the kernel
– 12 available for user processes, which yields 3 GB of accessible memory
– Potential for performance regression

As the SLB entries are limited, you can only address 3 GB of user memory directly from SLB
in POWER7, which is usually not enough for most applications. And if you failed to address
memory directly from SLB, the performance deteriorates.

This is why LSA is introduced in AIX. Through LSA, you can address 12 TB of memory using
12 SLB entries, and SLB faults should be rare. Because this is transparent to the application,
you can expect an immediate performance boost for many applications that have a large
memory footprint (Figure 4-6 on page 132).
Chapter 4. Optimization of an IBM AIX operating system 131

Figure 4-6 Process address space example with LSA

Enabling LSA and verification
In the following sections, we introduce how to enable LSA and check whether LSA has taken
effect.

Enabling LSA
There are vmo options as well as environment variables available to enable LSA. For most
cases, you need to set esid_allocator=1 when in AIX 6.1, and do nothing in AIX 7.1 because
the default is on already. You can also change the environment variables on a per process
basis. The option details are as follows:

� esid_allocator, VMM_CNTRL=ESID_ALLOCATOR=[0,1]

Default off (0) in AIX 6.1 TL06, on (1) in AIX 7.1. When on, indicates that the large
segment aliasing effective address allocation policy is in use. This parameter can be
changed dynamically but will only be effective for future shared memory allocations.

� shm_1tb_shared, VMM_CNTRL=SHM_1TB_SHARED=[0,4096]

Default set to 12 (3 GB) on POWER7, 44 (11GB) on POWER6 and earlier. This is in
accord with the hardware limit of POWER6 and POWER7. This parameter sets the
threshold number of 256 MB segments at which a shared memory region is promoted to
use a 1-TB alias.

� shm_1tb_unshared, VMM_CNTRL=SHM_1TB_UNSHARED=[0,4096]

Default set to 256 (64 GB). This parameter controls the threshold number of 256 MB
segments at which multiple homogeneous small shared memory regions will be promoted
to an unshared alias. Use this parameter with caution because there could be
performance degradation when there are frequent shared memory attaches and detaches.

� shm_1tb_unsh_enable

Default set to on (1) in AIX 6.1 TL06 and AIX 7.1 TL01; Default set to off (0) in AIX 7.1
TL02 and later releases. When on, indicates unshared aliases are in use.

80GB shared
Memory region
(320 segments)

Kernel

Program Text
Heap

80GB shared
Memory region
(320 segments)

Kernel

Program Text
Heap

3 256MB
segments

320 256MB
segments

256 256MB
segments

3 256MB
segments

1 1TB
shared alias
segment

1 1TB unshared
alias segment

579 SLB entries,
heavy SLB thrashing

5 SLB entries,
no SLB faults
132 IBM Power Systems Performance Guide: Implementing and Optimizing

You can also refer to the Oracle Database and 1-TB Segment Aliasing in the following website
for more information:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD105761

Verification of LSA
This section shows the LSA verification steps:

1. Get the process ID of the process using LSA, which can be any user process, for example
a database process.

2. Use svmon to confirm that the shared memory regions are already allocated, as shown in
Example 4-6.

Example 4-6 svmon -P <pid>

#svmon -P 3670250

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 3670250 lsatest 17260 10000 0 17229 Y N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 3692 0 0 3661
 m 64 KB 848 625 0 848

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 20002 0 work kernel segment m 671 622 0 671
 990019 90000000 work shared library text m 172 0 0 172
 50005 9ffffffd work shared library sm 2541 0 0 2541
 9b001b 90020014 work shared library s 161 0 0 161
 b70f37 f00000002 work process private m 5 3 0 5
 fb0b7b 9001000a work shared library data sm 68 0 0 68
 a10021 9fffffff clnt USLA text,/dev/hd2:4225 s 20 0 - -
 e60f66 70000004 work default shmat/mmap sm 14 0 0 14
 fd0e7d 70000023 work default shmat/mmap sm 14 0 0 14
 ee0fee 70000007 work default shmat/mmap sm 14 0 0 14
 ea0f6a 7000003f work default shmat/mmap sm 14 0 0 14
 e50e65 70000021 work default shmat/mmap sm 14 0 0 14
 d10bd1 7000001a work default shmat/mmap sm 14 0 0 14
 fb0f7b 70000002 work default shmat/mmap sm 14 0 0 14
 ff0fff 70000009 work default shmat/mmap sm 14 0 0 14
 f20e72 7000003d work default shmat/mmap sm 14 0 0 14
 e50fe5 70000028 work default shmat/mmap sm 14 0 0 14
 f00e70 7000000e work default shmat/mmap sm 14 0 0 14
 8a0c8a 7000001e work default shmat/mmap sm 14 0 0 14
 f80f78 7000002f work default shmat/mmap sm 14 0 0 14

3. Run kdb under root (Example 4-7).

Example 4-7 Running kdb

#kdb
 START END <name>
0000000000001000 00000000058A0000 start+000FD8

Note: Unshared aliases might degrade performance in case there are frequent shared
memory attaches and detaches. We suggest you turn unshared aliasing off.
Chapter 4. Optimization of an IBM AIX operating system 133

F00000002FF47600 F00000002FFDF9C8 __ublock+000000
000000002FF22FF4 000000002FF22FF8 environ+000000
000000002FF22FF8 000000002FF22FFC errno+000000
F1000F0A00000000 F1000F0A10000000 pvproc+000000
F1000F0A10000000 F1000F0A18000000 pvthread+000000
read vscsi_scsi_ptrs OK, ptr = 0xF1000000C02D6380
(0)>

4. Run tpid -d <pid> in kdb to get the SLOT number of the related thread (Example 4-8).

Example 4-8 tpid -d <pid>

(0)> tpid -d 3670250
 SLOT NAME STATE TID PRI RQ CPUID CL WCHAN

pvthread+019500 405!lsatest RUN 1950075 071 4 0

5. Choose any of the thread SLOT numbers listed (only one available above), and run “user
-ad <slot_number>” in kdb. As in Example 4-9, the LSA_ALIAS in the command output
means LSA is activated for the shared memory allocation. If LSA_ALIAS flag does not
exist, LSA is not in effect.

Example 4-9 user -ad <slot_number>

(0)> user -ad 405
User-mode address space mapping:

uadspace node allocation......(U_unode) @ F00000002FF48960
usr adspace 32bit process.(U_adspace32) @ F00000002FF48980

segment node allocation.......(U_snode) @ F00000002FF48940
segnode for 32bit process...(U_segnode) @ F00000002FF48BE0

U_adspace_lock @ F00000002FF48E20
 lock_word.....0000000000000000 vmm_lock_wait.0000000000000000
V_USERACC strtaddr:0x0000000000000000 Size:0x0000000000000000

ESID Allocator version (U_esid_allocator)........ 0001
shared alias thresh (U_shared_alias_thresh)...... 000C
unshared alias thresh (U_unshared_alias_thresh).. 0100

 vmmflags......00400401 SHMAT BIGSTAB LSA_ALIAS

Identify LSA issues
In the following sections, we introduce how to identify LSA issues using hpmstat and tprof.

Using hpmstat to identify LSA issues
The hpmstat command provides system-wide hardware performance counter information that
can be used to monitor SLB misses. Refer to “The hpmstat and hpmcount utilities” on
page 334 for more information about hpmstat. If there are a lot of SLB misses, then enabling
LSA should help.

You can get the supported event groups from the pmlist command in AIX, as shown in
Example 4-10 on page 135.
134 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 4-10 Supported hardware performance event groups

#pmlist -g -1|pg
...
Group #10: pm_slb_miss
Group name: SLB Misses
Group description: SLB Misses
Group status: Verified
Group members:
Counter 1, event 77: PM_IERAT_MISS : IERAT Reloaded (Miss)
Counter 2, event 41: PM_DSLB_MISS : Data SLB misses
Counter 3, event 89: PM_ISLB_MISS : Instruction SLB misses
Counter 4, event 226: PM_SLB_MISS : SLB misses
Counter 5, event 0: PM_RUN_INST_CMPL : Run instructions completed
Counter 6, event 0: PM_RUN_CYC : Run cycles
...

Group #10 is used for reporting SLB misses. Use hpmstat to monitor the SLB misses events
as shown in Example 4-11. Generally you should further investigate the issue when the SLB
miss rate per instruction is greater than 0.5%. The DSLB miss rate per instruction is 1.295%,
and is not acceptable. You can enable LSA by setting vmo -p -o esid_allocator=1 and
seeing the effect.

Example 4-11 hpmstat before LSA is enabled

#hpmstat -r -g 10 20
 Execution time (wall clock time): 20.010013996 seconds

 Group: 10
 Counting mode: user+kernel+hypervisor+runlatch
 Counting duration: 160.115119955 seconds
 PM_IERAT_MISS (IERAT Reloaded (Miss)) : 20894033
 PM_DSLB_MISS (Data SLB misses) : 72329260
 PM_ISLB_MISS (Instruction SLB misses) : 15710
 PM_SLB_MISS (SLB misses) : 72344970
 PM_RUN_INST_CMPL (Run instructions completed) : 5584383071
 PM_RUN_CYC (Run cycles) : 66322682987

 Normalization base: time

 Counting mode: user+kernel+hypervisor+runlatch

 Derived metric group: Translation

 [] % DSLB_Miss_Rate per inst : 1.295 %
 [] IERAT miss rate (%) : 0.374 %
 [] % ISLB miss rate per inst : 0.000 %

 Derived metric group: General

 [] Run cycles per run instruction : 11.876
 [] MIPS : 34.877
MIPS

 u=Unverified c=Caveat R=Redefined m=Interleaved
Chapter 4. Optimization of an IBM AIX operating system 135

Example 4-12 shows the hpmstat output after we set esid_allocator=1 and restarted the
application. You can see that the SLB misses are gone after LSA is activated.

Example 4-12 hpmstat output after LSA is enabled

#hpmstat -r -g 10 20
 Execution time (wall clock time): 20.001231826 seconds

 Group: 10
 Counting mode: user+kernel+hypervisor+runlatch
 Counting duration: 160.005281724 seconds
 PM_IERAT_MISS (IERAT Reloaded (Miss)) : 189529
 PM_DSLB_MISS (Data SLB misses) : 25347
 PM_ISLB_MISS (Instruction SLB misses) : 15090
 PM_SLB_MISS (SLB misses) : 40437
 PM_RUN_INST_CMPL (Run instructions completed) : 2371507258
 PM_RUN_CYC (Run cycles) : 66319381743

 Normalization base: time

 Counting mode: user+kernel+hypervisor+runlatch

 Derived metric group: Translation

 [] % DSLB_Miss_Rate per inst : 0.001 %
 [] IERAT miss rate (%) : 0.008 %
 [] % ISLB miss rate per inst : 0.001 %

 Derived metric group: General

 [] Run cycles per run instruction : 27.965
 [] MIPS : 14.821
MIPS

 u=Unverified c=Caveat R=Redefined m=Interleaved

Using tprof to identify LSA issues
An -E option is available for monitoring such events. When there is a notable amount of SLB
misses, you should be able to see a lot of kernel processor time spent in
set_smt_pri_user_slb_found. In Example 4-13 you can see 13.92%
set_smt_pri_user_slb_found, and you can find that lsatest caused the problem.

Example 4-13 tprof before LSA is enabled

#tprof -E -sku -x sleep 10
Configuration information
=========================
System: AIX 7.1 Node: p750s1aix2 Machine: 00F660114C00
Tprof command was:
 tprof -E -sku -x sleep 10
Trace command was:
 /usr/bin/trace -ad -M -L 1073741312 -T 500000 -j
00A,001,002,003,38F,005,006,134,210,139,5A2,5A5,465,2FF,5D8, -o -
Total Samples = 1007
Traced Time = 10.02s (out of a total execution time of 10.02s)
Performance Monitor based reports:
136 IBM Power Systems Performance Guide: Implementing and Optimizing

Processor name: POWER7
Monitored event: Processor cycles
Sampling interval: 10ms
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Process Freq Total Kernel User Shared Other
======= ==== ===== ====== ==== ====== =====
lsatest 1 99.50 24.85 74.65 0.00 0.00
/usr/bin/sh 2 0.20 0.10 0.00 0.10 0.00
gil 1 0.10 0.10 0.00 0.00 0.00
...
Total % For All Processes (KERNEL) = 25.25

Subroutine % Source
========== ====== ======
set_smt_pri_user_slb_found 13.92 noname
start 8.05 low.s
.user_slb_found 1.79 noname
slb_stats_usr_point 0.80 noname
._ptrgl 0.20 low.s
slb_user_tmm_fixup 0.10 noname
.enable 0.10 misc.s
.tstart 0.10 /kernel/proc/clock.c
.v_freexpt 0.10 rnel/vmm/v_xptsubs.c

After we enabled LSA, set_smt_pri_user_slb_found was gone (Example 4-14).

Example 4-14 tprof after LSA is enabled

#tprof -E -sku -x sleep 10
Configuration information
=========================
System: AIX 7.1 Node: p750s1aix2 Machine: 00F660114C00
Tprof command was:
 tprof -E -sku -x sleep 10
Trace command was:
 /usr/bin/trace -ad -M -L 1073741312 -T 500000 -j
00A,001,002,003,38F,005,006,134,210,139,5A2,5A5,465,2FF,5D8, -o -
Total Samples = 1007
Traced Time = 10.02s (out of a total execution time of 10.02s)
Performance Monitor based reports:
Processor name: POWER7
Monitored event: Processor cycles
Sampling interval: 10ms
...
Total % For All Processes (KERNEL) = 0.10

Subroutine % Source
========== ====== ======
ovlya_addr_sc_ret 0.10 low.s
Chapter 4. Optimization of an IBM AIX operating system 137

Sample program illustration
The sample program used in this section is in Appendix C, “Workloads” on page 341. In the
sample scenario, we got about a 30% performance gain. Note that real workload benefits can
vary.

4.2.4 Multiple page size support

In AIX, the virtual memory is split into pages, with a default page size of 4 KB. The POWER5+
processor supports four virtual memory page sizes: 4 KB (small pages), 64 KB (medium
pages), 16 MB (large pages), and 16 GB (huge pages). The POWER6 processor also
supports using 64 KB pages in segments with base page size of 4 KB. AIX uses this process
to provide the performance benefits of 64 KB pages when useful or resorting to 4 KB pages
where 64 KB pages would waste too much memory, such as allocated but not used by the
application.

Using a larger virtual memory page size such as 64 KB for an application’s memory can
improve the application's performance and throughput due to hardware efficiencies
associated with larger page sizes. Using a larger page size can decrease the hardware
latency of translating a virtual page address to a physical page address. This decrease in
latency is due to improving the efficiency of hardware translation caches such as a
processor’s translation lookaside buffer (TLB). Because a hardware translation cache only
has a limited number of entries, using larger page sizes increases the amount of virtual
memory that can be translated by each entry in the cache. This increases the amount of
memory that can be accessed by an application without incurring hardware translation
delays.

POWER6 supports mixing 4 KB and 64 KB page sizes. AIX 6.1 takes advantage of this new
hardware capability automatically without user intervention. This AIX feature is called
Dynamic Variable Page Size Support (DVPSS). To avoid backward compatibility issues,
VPSS is disabled in segments that currently have an explicit page size selected by the user.

Some applications may require a configuration to take advantage of multiple page support,
while others will take advantage by default. SAP, for example, needs some additional
configuration to make use of 64 KB pages. Information regarding the required configuratin
can be found in the “Improving SAP performance on IBM AIX: Modification of the application
memory page size to improve the performance of SAP NetWeaver on the AIX operating
system” whitepaper at:

http://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/whitepaper/aix/s
ap/netweaver/performance

Large pages
Large pages are intended to be used in specific environments. AIX does not automatically
use these page sizes. AIX must be configured to do so, and the number of pages of each of
these page sizes must also be configured. AIX cannot automatically change the number of
configured 16 MB or 16 GB pages.

Not all applications benefit from using large pages. Memory-access-intensive applications
such as databases that use large amounts of virtual memory can benefit from using large
pages (16 MB). DB2 and Oracle require specific settings to use this. IBM Java can take

Note: The use of multiple page support cannot be combined with Active Memory Sharing
(AMS) or Active Memory Expansion (AME). Both only support 4 KB pages. AME can
optionally support 64 K pages, but the overhead in enabling that support can cause poor
performance.
138 IBM Power Systems Performance Guide: Implementing and Optimizing

http://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/whitepaper/aix/sap/netweaver/performance

advantage of medium (64 K) and large page sizes. Refer to section 7.3, “Memory and page
size considerations” in the POWER7 and POWER7+ Optimization and Tuning Guide,
SG24-8079.

AIX maintains different pools for 4 KB and 16 MB pages. An application (at least WebSphere)
configured to use large pages can still use 4 KB pages. However, other applications and
system processes may not be able to use 16 MB pages. In this case, if you allocate too many
large pages you can have contention for 4 KB and high paging activity.

AIX treats large pages as pinned memory and does not provide paging support for them.
Using large pages can result in an increased memory footprint due to memory fragmentation.

Since AIX 5.3, the large page pool is dynamic. The amount of physical memory that you
specify takes effect immediately and does not require a reboot.

Example 4-15 shows how to verify the available page sizes.

Example 4-15 Display the possible page sizes

pagesize -a
4096
65536
16777216
17179869184

Example 4-16 shows how to configure two large pages dynamically.

Example 4-16 Configuring two large pages (16 MB)

vmo -o lgpg_regions=2 -o lgpg_size=16777216
Setting lgpg_size to 16777216
Setting lgpg_regions to 2

Example 4-17 shows how to disable large pages.

Example 4-17 Removing large page configuration

vmo -o lgpg_regions=0
Setting lgpg_regions to 0

The commands that can be used to monitor different page size utilization are vmstat and
svmon. The flag -P of vmstat followed by the page size shows the information for that page
size, as seen in Example 4-18. The flag -P ALL shows the overall memory utilization divided
into different page sizes, as seen in Example 4-19 on page 140.

Example 4-18 vmstat command to verify large page utilization

vmstat -P 16MB

System configuration: mem=8192MB

pgsz memory page
----- -------------------------- ------------------------------------
 siz avm fre re pi po fr sr cy

Note: You should be extremely cautious when configuring your system for supporting large
pages. You need to understand your workload before using large pages in your system.
Chapter 4. Optimization of an IBM AIX operating system 139

 16M 200 49 136 0 0 0 0 0 0

Example 4-19 vmstat command to show memory utilization grouped by page sizes

vmstat -P ALL

System configuration: mem=8192MB

pgsz memory page
----- -------------------------- ------------------------------------
 siz avm fre re pi po fr sr cy
 4K 308832 228825 41133 0 0 0 13 42 0
 64K 60570 11370 51292 0 0 39 40 133 0
 16M 200 49 136 0 0 0 0 0 0

Example 4-20 shows that svmon with the flag -G is another command that can be used to
verify memory utilization divided into different page sizes.

Example 4-20 svmon command to show memory utilization grouped by page sizes

svmon -G
 size inuse free pin virtual mmode
memory 2097152 1235568 861584 1129884 611529 Ded
pg space 655360 31314

 work pers clnt other
pin 371788 0 0 135504
in use 578121 0 38951

PageSize PoolSize inuse pgsp pin virtual
s 4 KB - 267856 3858 176364 228905
m 64 KB - 9282 1716 8395 11370
L 16 MB 200 49 0 200 49

In the three previous examples, the output shows 200 large pages configured in AIX and 49 in
use.

4.3 I/O device tuning

When configuring AIX I/O devices for performance, there are many factors to take into
consideration. It is important to understand the underlying disk subsystem, and how the AIX
system is attached to it.

In this section we focus only on the tuning of disk devices and disk adapter devices in AIX.
AIX LVM and file system performance tuning are discussed in detail in 4.4, “AIX LVM and file
systems” on page 157.

4.3.1 I/O chain overview

Understanding I/O chain specifically regarding disks and disk adapters is important because
it ensures that all devices in the stack have the appropriate tuning parameters defined.
140 IBM Power Systems Performance Guide: Implementing and Optimizing

We look at three types of disk attachments:

� Disk presented via dedicated physical adapters

� Virtualized disk using NPIV

� Virtualized disk using virtual SCSI

Refer to IBM PowerVM Virtualization Introduction and Configuration, SG24-7940-04, which
describes in detail how to configure NPIV and Virtual SCSI. In this section we only discuss
the concepts and how to tune parameters related to performance.

In 3.6.1, “Virtual SCSI” on page 75, 3.6.2, “Shared storage pools” on page 76, 3.6.3, “N_Port
Virtualization” on page 79 we discuss in detail the use cases and potential performance
implications of using NPIV and Virtual SCSI.

Dedicated physical adapters
When we referred to disk storage presented via direct physical adapters, this implies that the
disk is attached to the AIX system without the use of Virtual I/O. This means that the AIX
system has exclusive access to fiber channel adapters, which are used to send I/O to an
external storage system.

Looking at Figure 4-7 from left to right, when a write or a read operation is issued to AIX, LVM
uses one physical buffer (pbuf) for each request. The physical buffers are described in 4.3.3,
“Pbuf on AIX disk devices” on page 148. The I/O is then queued to the physical volume (PV),
then handed to the multipathing driver and queued to the disk adapter device. The I/O is then
passed through one or more SAN fabric switches (unless the storage is direct-attached to the
AIX system) and reaches the external storage. If the I/O can be written to or read from the
storage system’s cache, it is, otherwise it goes to disk.

Figure 4-7 Dedicated adapters

NPIV
NPIV is a method where disk storage is implemented using PowerVM’s N_Port virtualization
capability. In this instance, the Virtual I/O servers act as a passthrough enabling multiple AIX
LPARs to access a single shared fiber channel (FC) port. A single FC adapter port on a
Virtual I/O server is capable of virtualizing up to 64 worldwide port names (WWPN), meaning
there are a maximum of 64 client logical partitions that can connect.

AIX

LVM

S
A

N
 F

ab
ric

 S
w

itc
he

s

pbuf
fcs0hdisk1

pbufhdisk2

pbufhdisk3

pbufhdisk4LV
 S

tr
ip

ed
 o

r
P

P
 S

pr
e

ad

L
og

ic
al

 V
o

lu
m

e
 (

JF
S

2
o

r
R

A
W

)

External Storage

fcs1

Queue

Queue

Queue

Queue

Queue

Queue

M
ul

tip
a

th
in

g
 D

riv
e

r

Service TimeApplication Wait Time

RAID Arrays

R
ea

d
/ W

rit
e

C
a

ch
e

Chapter 4. Optimization of an IBM AIX operating system 141

The I/O sequence is very similar to that of using dedicated physical adapters with the
exception that there is an additional queue on each fiber channel adapter per Virtual I/O
server, and there might be competing workloads on the fiber channel port from different
logical partitions.

Figure 4-8 illustrates the I/O chain when NPIV is in use.

Figure 4-8 N_Port virtualization

Virtual SCSI
Virtual SCSI is a method of presenting a disk assigned to one or more Virtual I/O servers to a
client logical partition. When an I/O is issued to the AIX LVM, the pbuf and hdisk queue is
used exactly the same as in the dedicated physical adapter and NPIV scenarios. The
difference is that there is a native AIX SCSI driver used and I/O requests are sent to a virtual
SCSI adapter. The virtual SCSI adapter is a direct mapping to the Virtual I/O server’s vhost
adapter, which is allocated to the client logical partition.

The hdisk device exists on both the client logical partition and the virtual I/O server, so there
is also a queue to the hdisk on the virtual I/O server. The multipathing driver installed on the
virtual I/O server then queues the I/O to the physical fiber channel adapter assigned to the
VIO server and the I/O is passed to the external storage subsystem as described in the
dedicated physical adapter and NPIV scenarios. There may be some limitation with copy
services from a storage system in the case that a device driver is required to be installed on
the AIX LPAR for this type of functionality.

Figure 4-9 on page 143 illustrates the I/O chain when virtual SCSI is in use.

Virtual I/O

AIX

LVM

S
A

N
 F

ab
ric

 S
w

itc
h

es

pbuf
fcs0hdisk1

pbufhdisk2

pbufhdisk3

pbufhdisk4L
V

 S
tr

ip
e

d
or

 P
P

 S
p

re
ad

Lo
gi

ca
l V

ol
um

e
 (

JF
S

2
o

r
R

A
W

)

External Storage

fcs1

Queue

Queue

Queue

Queue

M
ul

tip
at

hi
ng

 D
riv

e
r

Service TimeApplication Wait Time

RAID Arrays

R
ea

d
/ W

rit
e

C
a

ch
e

Virtual I/O

fcs0

fcs0

Queue

Queue

Queue

Queue

vfchost0

vfchost0
142 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 4-9 Virtual SCSI

4.3.2 Disk device tuning

The objective of this section is to discuss which AIX hdisk device settings can be tuned and
what their purpose is. Most of the settings discussed here are dependant on the type of
workload and the performance capabilities of the storage system.

Understanding your I/O workload is important when performing an analysis of which settings
need to be tuned. Your workload may be an OLTP type workload processing small block
random I/O or conversely a data warehouse type workload that processes large block
sequential I/O. The tuning parameters here differ depending on the type of workload running
on the system.

It is also important to understand that changing these values here may enable AIX to send
more I/O and larger I/O to the storage system, but this adds additional load to the storage
system and SAN fabric switches. We suggest that you work with your SAN and storage
administrator to understand the effect that tuning the device will have on your storage system.

Table 4-5 provides a summary of the tuning parameters available on an hdisk device and their
purpose.

Table 4-5 Tuning parameters on an AIX hdisk device

Note: The same disk presentation method applies when presenting disks on a Virtual I/O
server to a client logical partition as well as using shared storage pools.

Virtual I/O

AIX

LVM

S
A

N
 F

ab
ric

 S
w

itc
he

s

pbuf
vscsi0hdisk1

pbufhdisk2

pbufhdisk3

pbufhdisk4

LV
 S

tr
ip

e
d

 o
r

P
P

 S
p

re
ad

Lo
g

ic
a

l V
o

lu
m

e
 (

JF
S

2
or

 R
A

W
)

External Storage

vscsi1

Queue

Queue

Queue

Queue

A
IX

 M
P

IO

Service TimeApplication Wait Time

RAID Arrays

R
e

ad
 /

W
rit

e
C

a
ch

e

Virtual I/O

fcs0Queuehdisk1

hdisk2

hdisk3

hdisk4

Queue

Queue

Queue

Queue

fcs1Queue

M
u

lti
p

at
h

in
g

 D
riv

er

vh
o

st0

fcs0Queuehdisk1

hdisk2

hdisk3

hdisk4

Queue

Queue

Queue

Queue

fcs1Queue

M
ul

tip
a

th
in

g
 D

ri
ve

r

vho
st0

Setting Description

algorithm This determines the method by which AIX distributes I/O down the paths that are
available. The typical values are failover, where only one path is used, and
round_robin where I/O is distributed across all available paths. Some device
drivers add additional options, such as SDDPCM, which adds load_balance,
which is similar to round_robin except it has more intelligent queueing. We
suggest that you consult your storage vendor to find out the optimal setting.
Chapter 4. Optimization of an IBM AIX operating system 143

As described in Table 4-5 on page 143, the max_transfer setting specifies the maximum
amount of data that is transmitted in a single I/O operation. In Example 4-21, a simple I/O test
is performed to demonstrate the use of the max_transfer setting. There is an AIX system
processing a heavy workload of 1024 k block sequential I/Os with a read/write ratio of 80:20
to an hdisk (hdisk1) which has the max_transfer set to the default of 0x40000, which equates
to 256 KB.

Typically, the default max_transfer value is suitable for most small block workloads. However,
in a scenario with large block streaming workloads, it is suggested to consider tuning the
max_transfer setting.

This is only an example test with a repeatable workload—the difference between achieving
good performance and having performance issues is to properly understand your workload,
establishing a baseline and tuning parameters individually and measuring the results.

Example 4-21 Simple test using 256KB max_transfer size

root@aix1:/ # lsattr -El hdisk1 -a max_transfer
max_transfer 0x40000 Maximum TRANSFER Size True
root@aix1:/ # iostat -D hdisk1 10 1

System configuration: lcpu=32 drives=3 paths=10 vdisks=2

hdisk1 xfer: %tm_act bps tps bread bwrtn
 100.0 2.0G 7446.8 1.6G 391.4M

hcheck_interval This is the interval in seconds that AIX sends health check polls to a disk. If failed
MPIO paths are found, the failed path will also be polled and re-enabled when it
is found to be responding. It is suggested to confirm with the storage vendor what
the recommended value to use here is.

max_transfer This specifies the maximum amount of data that can be transmitted in a single I/O
operation. If an application makes a large I/O request, the I/O is broken down into
multiple I/Os the size of the max_transfer tunable. Typically, for applications
transmitting small block I/O the default 256 KB is sufficient. However, in cases
where there is large block streaming workload, the max_transfer size may be
increased.

max_coalesce This value sets the limit for the maximum size of an I/O that the disk driver will
create by grouping together smaller adjacent requests. We suggest that the
max_coalesce value match the max_transfer value.

queue_depth The service queue depth of an hdisk device specifies the maximum number of I/O
operations that can be in progress simultaneously on the disk. Any requests
beyond this number are placed into another queue (wait queue) and remain in a
pending state until an earlier request on the disk completes. Depending on how
many concurrent I/O operations the backend disk storage can support, this value
may be increased. However, this will place additional workload on the storage
system.

reserve_policy This parameter defines the reservation method used when a device is opened.
The reservation policy is required to be set appropriately depending on what
multipathing algorithm is in place. We suggest that you consult your storage
vendor to understand what this should be set to based on the algorithm. Possible
values include no_reserve, single_path, PR_exclusive, and PR_shared. This
reservation policy is required to be set to no_reserve in a dual VIO server setup
with virtual SCSI configuration, enabling both VIO servers to access the device.

Setting Description
144 IBM Power Systems Performance Guide: Implementing and Optimizing

 read: rps avgserv minserv maxserv timeouts fails
 5953.9 8.2 0.6 30.0 0 0
 write: wps avgserv minserv maxserv timeouts fails
 1492.9 10.1 1.2 40.1 0 0
 queue: avgtime mintime maxtime avgwqsz avgsqsz sqfull
 20.0 0.0 35.2 145.0 62.0 7446.8
--
root@aix1:/ #

The resulting output of iostat -D for a single 10-second interval looking at hdisk1 displays
the following:

� Observed throughput is 2 GB per second. This is described as bytes per second (bps).

� This is made up of 7446.8 I/O operations per second. This is described as transfers per
second (tps).

� The storage shows an average read service time of 8.2 milliseconds and an average write
of 10.1 milliseconds. This is described as average service time (avgserv).

� The time that our application has to wait for the I/O to be processed in the queue is 20
milliseconds. This is described as the average time spent by a transfer request in the wait
queue (avgtime). This is a result of our hdisk queue becoming full, which is shown as
sqfull. The queue has filled up as a result of each I/O 1024 KB I/O request consisting of
four 256 KB I/O operations. Handling the queue depth is described later in this section.

� The service queue for the disk was also full, due to the large number of I/O requests.

We knew that our I/O request size was 1024 KB, so we changed our max_transfer on hdisk1
to be 0x100000 which is 1 MB to match our I/O request size. This is shown in Example 4-22.

Example 4-22 Changing the max_transfer size to 1 MB

root@aix1:/ # chdev -l hdisk1 -a max_transfer=0x100000
hdisk1 changed
root@aix1:/

On completion of changing the max_transfer, we ran the same test again, as shown in
Example 4-23, and observed the results.

Example 4-23 Simple test using 1MB max_transfer size

root@aix1:/ # lsattr -El hdisk1 -a max_transfer
max_transfer 0x100000 Maximum TRANSFER Size True
root@aix1:/ # iostat -D hdisk1 10 1

hdisk1 xfer: %tm_act bps tps bread bwrtn
 100.0 1.9G 1834.6 1.5G 384.8M
 read: rps avgserv minserv maxserv timeouts fails
 1467.6 24.5 14.4 127.2 0 0
 write: wps avgserv minserv maxserv timeouts fails
 367.0 28.6 16.2 110.7 0 0
 queue: avgtime mintime maxtime avgwqsz avgsqsz sqfull
 0.0 0.0 0.3 0.0 61.0 0.0
--
root@aix1:/ #

The output of iostat -D for a single 10-second interval looking at hdisk1 in the second test
displayed the following:
Chapter 4. Optimization of an IBM AIX operating system 145

� Observed throughput is 1.9 Gb per second. This is almost the same as the first test,
shown in bps.

� This is made up of 1,834 I/O operations per second, which is shown in tps in the output in
Example 4-23 on page 145. You can see that the number of I/O operations has been
reduced by a factor of four, which is a result of moving from a max_transfer size of 256 KB
to 1 MB. This means our 1024 KB I/O request is now processed in a single I/O operation.

� The storage shows an average read service time of 24.5 milliseconds and an average
write service time of 28.6 milliseconds. This is shown as avgserv. Notice here that our
service time from the storage system has gone up by a factor of 2.5, while our I/O size is
four times larger. This demonstrates that we placed additional load on our storage system
as our I/O size increased, while overall the time taken for the 1024 KB read I/O request to
be processed was reduced as a result of the change.

� The time that our application had to wait for the I/O to be retrieved from the queue was 0.0
shown as avgtime. This was a result of the amount of I/O operations being reduced by a
factor of four and their size increased by a factor of four. In the first test for a single read
1024 KB I/O request to be completed, this consisted of four 256 KB I/O operations with a
8.2 millisecond service time and a 20 millisecond wait queue time, giving an overall
average response time to the I/O request of 52.8 milliseconds since a single 1024 KB I/O
request consists of four 256 KB I/Os.

� In the second test after changing the max_transfer size to 1 MB, we completed the
1024 KB I/O request in a single I/O operation with an average service time of 24.5
milliseconds, giving an average of a 28.3 millisecond improvement per 1024 KB I/O
request. This can be calculated by the formula avg IO time = avgtime + avgserv.

The conclusion of this test is that for our large block I/O workload, increasing the value of the
max_transfer size to enable larger I/Os to be processed without filling up the disk’s I/O queue
provided a significant increase in performance.

The next setting that is important to consider is queue_depth on an AIX hdisk device. This is
described in Table 4-5 on page 143 as the maximum number of I/O operations that can be in
progress simultaneously on a disk device.

To be able to tune this setting, it is important to understand whether your queue is filling up on
the disk and what value to set queue_depth to. Increasing queue_depth also places
additional load on the storage system, because a larger number of I/O requests are sent to
the storage system before they are queued.

Example 4-24 shows how to display the current queue_depth and observe what the
maximum queue_depth is that can be set on the disk device. In this case the range is
between 1 and 256. Depending on what device driver is in use, the maximum queue_depth
may vary. It is always good practice to obtain the optimal queue depth for the storage system
and its configuration from your storage vendor.

Example 4-24 Display current queue depth and maximum supported queue depth

root@aix1:/ # lsattr -El hdisk1 -a queue_depth
queue_depth 20 Queue DEPTH True
root@paix1:/ # lsattr -Rl hdisk1 -a queue_depth
1...256 (+1)

Important: If you are using virtual SCSI and you change to max_transfer on an AIX hdisk
device, it is critical that these settings are replicated on the Virtual I/O server to ensure that
the changes take effect.
146 IBM Power Systems Performance Guide: Implementing and Optimizing

root@aix1:/ #

In Example 4-25 a simple test is performed to demonstrate the use of the queue_depth
setting. There is an AIX system processing a heavy workload of 8 k small block random I/Os
with an 80:20 read write ratio to an hdisk (hdisk1) which has its queue_depth currently set to
20. The iostat command issued here shows hdisk1 for a single interval of 10 seconds while
the load is active on the system.

Example 4-25 Test execution with a queue_depth of 20 on hdisk1

root@aix1:/ # iostat -D hdisk1 10 1

System configuration: lcpu=32 drives=3 paths=10 vdisks=2

hdisk1 xfer: %tm_act bps tps bread bwrtn
 99.9 296.5M 35745.1 237.2M 59.3M
 read: rps avgserv minserv maxserv timeouts fails
 28534.2 0.2 0.1 48.3 0 0
 write: wps avgserv minserv maxserv timeouts fails
 7210.9 0.4 0.2 50.7 0 0
 queue: avgtime mintime maxtime avgwqsz avgsqsz sqfull
 1.1 0.0 16.8 36.0 7.0 33898.5
--

Looking at the resulting output of iostat -D in Example 4-25, you can observe the following:

� Our sample workload is highly read intensive and performing 35,745 I/O requests per
second (tps) with a throughput of 296 MB per second (bps).

� The average read service time from the storage system is 0.2 milliseconds (avgserv).

� The average wait time per I/O transaction for the queue is 1.1 milliseconds (avgtime) and
the disk’s queue in the 10-second period iostat was monitoring the disk workload filled up
a total of 33,898 times (sqfull).

� The average amount of I/O requests waiting in the service wait queue was 36 (avgwqsz).

Based on this we could add our current queue depth (20) to the number of I/Os on average in
the service wait queue (36), and have a queue_depth of 56 for the next test. This should stop
the queue from filling up.

Example 4-26 shows changing the queue_depth on hdisk1 to our new queue_depth value.
The queue_depth value is our target queue_depth of 56, plus some slight headroom bringing
the total queue_depth to 64.

Example 4-26 Changing the queue_depth to 64 on hdisk1

root@aix1:/ # chdev -l hdisk1 -a queue_depth=64
hdisk1 changed
root@aix1:/ #

Example 4-27 on page 148 demonstrates the same test being executed again, but with the
increased queue_depth of 64 on hdisk1.

Note: In the event that the required queue_depth value cannot be assigned to an individual
disk, as a result of being beyond the recommendation by the storage vendor, it is
suggested to spread the workload across more hdisk devices because each hdisk has its
own queue.
Chapter 4. Optimization of an IBM AIX operating system 147

Example 4-27 Test execution with a queue_depth of 64 on hdisk1

root@aix1:/ # iostat -D hdisk1 10 1

System configuration: lcpu=32 drives=3 paths=10 vdisks=2

hdisk1 xfer: %tm_act bps tps bread bwrtn
 100.0 410.4M 50096.9 328.3M 82.1M
 read: rps avgserv minserv maxserv timeouts fails
 40078.9 0.4 0.1 47.3 0 0
 write: wps avgserv minserv maxserv timeouts fails
 10018.0 0.7 0.2 51.6 0 0
 queue: avgtime mintime maxtime avgwqsz avgsqsz sqfull
 0.0 0.0 0.3 0.0 23.0 0.0
--

Looking at the resulting output of iostat -D in Example 4-27, you can observe the following:

� Our sample workload is highly read intensive and performing 50,096 I/O requests per
second (tps) with a throughput of 410 MB per second (bps). This is significantly more than
the previous test.

� The average read service time from the storage stem is 0.4 milliseconds (avgserv), which
is slightly more than it was in the first test, because we are processing significantly more
I/O operations.

� The average wait time per I/O transaction for the queue is 0 milliseconds (avgtime) and the
disk’s queue in the 10-second period iostat was monitoring the disk workload did not fill up
at all. In contrast to the previous test, where the queue filled up 33,898 times and the wait
time for each I/O request was 1.1 milliseconds.

� The average amount of I/O requests waiting in the wait queue was 0 (avgwqsz), meaning
our queue was empty; however; additional load was put on the external storage system.

Based on this test, we can conclude that each I/O request had an additional 0.2 millisecond
response time from the storage system, while the 1.1 millisecond service queue wait time has
gone away, meaning that after making this change, our workload’s response time went from
1.3 milliseconds to 0.4 milliseconds.

4.3.3 Pbuf on AIX disk devices

AIX Logical Volume Manager (LVM) uses a construct named pbuf to control a pending disk
I/O. Pbufs are pinned memory buffers and one pbuf is always used for each individual I/O
request, regardless of the amount of data that is supposed to be transferred. AIX creates
extra pbufs when a new physical volume is added to a volume group.

Important: If you are using virtual SCSI and you change to queue_depth on an AIX hdisk
device, it is critical that these settings are replicated on the Virtual I/O server to ensure that
the changes take effect.

Note: When you change the max_transfer or queue_depth setting on an hdisk device, it
will be necessary that the disk is not being accessed and that the disk is not part of a
volume group that is varied on. To change the setting either unmount any file systems and
vary off the volume group, or change the queue_depth option with the -P flag of the chdev
command to make the change active at the next reboot.
148 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 4-28 shows the AIX volume group data_vg with two physical volumes. We can see
that the pv_pbuf_count is 512, which is the pbuf size for each physical volume in the volume
group, and the total_vg_pbufs is 1024, which is because there are two physical volumes in
the volume group, each with a pbuf size of 512.

Example 4-28 lvmo -av output

root@aix1:/ # lsvg -p data_vg
data_vg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk1 active 399 239 79..00..00..80..80
hdisk2 active 399 239 79..00..00..80..80
root@aix1:/ # lvmo -av data_vg
vgname = data_vg
pv_pbuf_count = 512
total_vg_pbufs = 1024
max_vg_pbufs = 524288
pervg_blocked_io_count = 3047
pv_min_pbuf = 512
max_vg_pbuf_count = 0
global_blocked_io_count = 3136
root@aix1:/ #

Also seen in Example 4-28, you can see that the pervg_blocked_io_count is 3047 and the
global_blocked_io_count is 3136. This means that the data_vg volume group has 3047 I/O
requests that have been blocked due to insufficient pinned memory buffers
(pervg_blocked_io_count). Globally across all of the volume groups, 3136 I/O requests have
been blocked due to insufficient pinned memory buffers.

In the case where the pervg_blocked_io_count is growing for a volume group, it may be
necessary to increase the number of pbuf buffers. This can be changed globally by using ioo
to set pv_min_pbuf to a greater number. However, it is suggested to handle this on a per
volume group basis.

pv_pbuf_count is the number of pbufs that are added when a physical volume is added to the
volume group.

Example 4-29 demonstrates increasing the pbuf buffers for the data_vg volume group from
512 per physical volume to 1024 per physical volume. Subsequently, the total number of pbuf
buffers for the volume group is also increased.

Example 4-29 Increasing the pbuf for data_vg

root@aix1:/ # lvmo -v data_vg -o pv_pbuf_count=1024
root@aix1:/ # lvmo -av data_vg
vgname = data_vg
pv_pbuf_count = 1024
total_vg_pbufs = 2048
max_vg_pbufs = 524288
pervg_blocked_io_count = 3047
pv_min_pbuf = 512
max_vg_pbuf_count = 0
global_blocked_io_count = 3136
root@aix1:/ #

If you are unsure about changing these values, contact IBM Support for assistance.
Chapter 4. Optimization of an IBM AIX operating system 149

4.3.4 Multipathing drivers

Drivers for IBM storage include SDDPCM for IBM DS8000, DS6000, SAN Volume Controller,
and Storwize® V7000 as well as the XIV® Host Attachment kit for an XIV Storage System.

The best source of reference for which driver to use is the IBM System Storage Interoperation
Center (SSIC), which provides details on drivers for IBM storage at:

http://www-03.ibm.com/systems/support/storage/ssic/interoperability.wss

Third-party drivers should be obtained from storage vendors and installed to deliver the best
possible performance.

4.3.5 Adapter tuning

The objective of this section is to detail what AIX storage adapter device settings can be
tuned to and their purpose. Three scenarios are covered here:

� Dedicated fiber channel adapters

� NPIV virtual fiber channel adapters

� Virtual SCSI

The most important thing to do when tuning the adapter settings is to understand the
workload that the disks associated with the adapters are handling and what their
configuration is. 4.3.2, “Disk device tuning” on page 143 details the configuration attributes
that are applied to hdisk devices in AIX.

Dedicated fiber channel adapters
The scenario of dedicated fiber channel (FC) adapters entails an AIX system or logical
partition (LPAR) with exclusive use of one or more FC adapters. There are two devices
associated with an FC adapter:

fcsN This is the actual adapter itself, and there is one of these devices per port on a fiber
channel card. For example, you may have a dual port fiber channel card. Its
associated devices could be fcs0 and fcs1.

fscsiN This is a child device that the FC adapter has which acts as a SCSI software
interface to handle SCSI commands related to disk access. If you have a dual port
fiber channel card associated with devices fcs0 and fcs1, their respective child
devices will be fscsi0 and fscsi1.

Table 4-6 on page 151 describes attributes of the fcs device which it is advised to consider
tuning.

Note: If at any point the volume group is exported and imported, the pbuf values will reset
to their defaults. If you have modified these, ensure that you re-apply the changes in the
event that you export and import the volume group.
150 IBM Power Systems Performance Guide: Implementing and Optimizing

http://www-03.ibm.com/systems/support/storage/ssic/interoperability.wss

Table 4-6 fcs device attributes

When tuning the attributes described in Table 4-6, the fcstat command can be used to
establish whether the adapter is experiencing any performance issues (Example 4-30).

Example 4-30 fcstat output

root@aix1:/ # fcstat fcs0

FIBRE CHANNEL STATISTICS REPORT: fcs0

Device Type: 8Gb PCI Express Dual Port FC Adapter (df1000f114108a03)
(adapter/pciex/df1000f114108a0)
Serial Number: 1C041083F7
Option ROM Version: 02781174
ZA: U2D1.11X4
World Wide Node Name: 0x20000000C9A8C4A6
World Wide Port Name: 0x10000000C9A8C4A6

FC-4 TYPES:
 Supported: 0x0000012000
 Active: 0x00000100
Class of Service: 3
Port Speed (supported): 8 GBIT
Port Speed (running): 8 GBIT
Port FC ID: 0x010000
Port Type: Fabric

Seconds Since Last Reset: 270300

 Transmit Statistics Receive Statistics
 ------------------- ------------------
Frames: 2503792149 704083655
Words: 104864195328 437384431872

LIP Count: 0
NOS Count: 0

Attribute Description

lg_term_dma The attribute lg_term_dma is the size in bytes of the DMA memory
area used as a transfer buffer. The default value of 0x800000 in
most cases is sufficient unless there is a very large number of fiber
channel devices attached. This value typically should only be
tuned under the direction of IBM Support.

max_xfer_size The max_xfer_size attribute dictates the maximum transfer size of
I/O requests. Depending on the block size of the workload, this
value may be increased from the default 0x100000 (1 MB) to
0x200000 (2 MB) when there are large block workloads, and the
hdisk devices are tuned for large transfer sizes. This attribute must
be large enough to accommodate the transfer sizes used by any
child devices, such as an hdisk device.

num_cmd_elems The attribute num_cmd_elems is the queue depth for the adapter.
The maximum value for a fiber channel adapter is 2048 and this
should be increased to support the total amount of I/O requests
that the attached devices are sending to the adapter.
Chapter 4. Optimization of an IBM AIX operating system 151

Error Frames: 0
Dumped Frames: 0
Link Failure Count: 0
Loss of Sync Count: 8
Loss of Signal: 0
Primitive Seq Protocol Error Count: 0
Invalid Tx Word Count: 31
Invalid CRC Count: 0

IP over FC Adapter Driver Information
 No DMA Resource Count: 3207
 No Adapter Elements Count: 126345

FC SCSI Adapter Driver Information
 No DMA Resource Count: 3207
 No Adapter Elements Count: 126345
 No Command Resource Count: 133

IP over FC Traffic Statistics
 Input Requests: 0
 Output Requests: 0
 Control Requests: 0
 Input Bytes: 0
 Output Bytes: 0

FC SCSI Traffic Statistics
 Input Requests: 6777091279
 Output Requests: 2337796
 Control Requests: 116362
 Input Bytes: 57919837230920
 Output Bytes: 39340971008
#

Highlighted in bold in the fcstat output in Example 4-30 on page 151 are the items of
interest. These counters are held since system boot and Table 4-7 describes the problem and
the suggested action.

Table 4-7 Problems detected in fcstat output

In Example 4-30 on page 151 we noticed that all three conditions in Table 4-7 are met, so we
increased num_cmd_elems and max_xfer_size on the adapter.

Example 4-31 shows how to change fcs0 to have a queue depth (num_cmd_elems) of 2048,
and a maximum transfer size (max_xfer_size) of 0x200000 which is 2 MB. The -P option was
used on the chdev command for the attributes to take effect on the next reboot of the system.

Example 4-31 Modify the AIX fcs device

root@aix1:/ # chdev -l fcs0 -a num_cmd_elems=2048 -a max_xfer_size=0x200000 -P
fcs0 changed

Problem Action

No DMA Resource Count increasing Increase max_xfer_size

No Command Resource Count Increase num_cmd_elems
152 IBM Power Systems Performance Guide: Implementing and Optimizing

root@aix1:/ #

There are no performance related tunables that can be set on the fscsi devices. However,
there are two tunables that are applied. These are described in Table 4-8.

Table 4-8 fscsi device attributes

Example 4-32 demonstrates how to enable dynamic tracking and set the fiber channel event
error recovery to fast_fail. The -P option on chdev will set the change to take effect at the next
reboot of the system.

Example 4-32 Modify the AIX fscsi device

root@aix1:/ # chdev -l fscsi0 -a dyntrk=yes -a fc_err_recov=fast_fail -P
fscsi0 changed
root@aix1:/ #

NPIV
The attributes applied to a virtual fiber channel adapter on an AIX logical partition are exactly
the same as those of a physical fiber channel adapter, and should be configured exactly as
described in dedicated fiber channel adapters in this section.

The difference with NPIV is that on the VIO server there is a fiber channel fcs device that is
shared by up to 64 client logical partitions. As a result there are a few critical considerations
when using NPIV:

� Does the queue depth (num_cmd_elems) attribute on the fcs device support all of the
logical partitions connecting NPIV to the adapter? In the event that the fcstat command
run on the Virtual I/O server provides evidence that the queue is filling up (no adapter
elements count and no command resource count), the queue depth will need to be
increased. If queue_depth has already been increased, the virtual fiber channel mappings
may need to be spread across more physical fiber channel ports where oversubscribed
ports are causing a performance degradation.

� Does the maximum transfer size (max_xfer_size) set on the physical adapter on the VIO
server match the maximum transfer size on the client logical partitions accessing the port?
It is imperative that the maximum transfer size set in AIX on the client logical partition

Note: It is important to ensure that all fcs devices on the system that are associated with
the same devices are tuned with the same attributes. If you have two FC adapters, you
need to apply the settings in Example 4-31 to both of them.

Attribute Description

dyntrk Dynamic tracking (dyntrk) is a setting that enables devices to
remain online during changes in the SAN that cause an N_Port ID
to change. This could be moving a cable from one switch port to
another, for example.

fc_err_recov Fiber channel event error recovery (fc_err_recov) has two
possible settings. These are delayed_fail and fast_fail. The
recommended setting is fast_fail when multipathed devices are
attached to the adapter.

Note: It is important to ensure that all fscsi devices on the system that are associated with
the same devices are tuned with the same attributes.
Chapter 4. Optimization of an IBM AIX operating system 153

matches the maximum transfer size set on the VIO server’s fcs device that is being
accessed.

Example 4-33 demonstrates how to increase the queue depth and maximum transfer size on
a physical FC adapter on a VIO server.

Example 4-33 Modify the VIO fcs device

$ chdev -dev fcs0 -attr num_cmd_elems=2048 max_xfer_size=0x200000 -perm
fcs0 changed
$

The settings dynamic tracking and FC error recovery discussed in Table 4-8 on page 153
are enabled by default on a virtual FC adapter in AIX. They are not, however, enabled by
default on the VIO server. Example 4-34 demonstrates how to enable dynamic tracking and
set the FC error recovery to fast fail on a VIO server.

Example 4-34 Modify the VIO fscsi device

$ chdev -dev fscsi0 -attr dyntrk=yes fc_err_recov=fast_fail -perm
fscsi0 changed
$

Virtual SCSI
There are no tunable values related to performance for virtual SCSI adapters. However, there
are two tunables that should be changed from their defaults in an MPIO environment with
dual VIO servers. The virtual SCSI description in this section applies to both shared storage
pools and traditional virtual SCSI implementations.

These settings are outlined in Table 4-9.

Table 4-9 vscsi device attributes

Note: In the event that an AIX LPAR has its fcs port’s attribute max_xfer_size greater than
that of the VIO server’s fcs port attribute max_xfer_size, it may cause the AIX LPAR to
hang on reboot.

Note: If the adapter is in use, you have to make the change permanent with the -perm flag
of chdev while in restricted shell. However, this change will only take effect next time the
VIOS is rebooted.

Attribute Description

vscsi_err_recov The vscsi_err_recov is used to determine how the vscsi driver will
handle failed I/O requests. Possible values are set to delayed_fail
and fast_fail. In scenarios where there are dual VIO servers and
disk devices are multipathed, the recommended value is fast_fail
so that in the event that an I/O request cannot be serviced by a
path, that path is immediately failed. The vscsi_err_recov attribute
is set to delayed_fail by default. Note that there is no load
balancing supported across devices multipathed on multiple vscsi
adapters.
154 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 4-35 demonstrates how to enable vscsi_err_recov to fast fail, and set the
vscsi_path_to to be set to 30 seconds.

Example 4-35 Modify the AIX vscsi device

root@aix1:/ # chdev -l vscsi0 -a vscsi_path_to=30 -a vscsi_err_recov=fast_fail -P
vscsi0 changed
root@aix1:/ # chdev -l vscsi1 -a vscsi_path_to=30 -a vscsi_err_recov=fast_fail -P
vscsi1 changed

In a virtual SCSI MPIO configuration, there is a path to each disk per virtual SCSI adapter.
For instance, in Example 4-36, we have three virtual SCSI disks. One is the root volume
group, the other two are in a volume group called data_vg.

Example 4-36 AIX virtual SCSI paths

root@aix1:/ # lspv
hdisk0 00f6600e0e9ee184 rootvg active
hdisk1 00f6600e2bc5b741 data_vg active
hdisk2 00f6600e2bc5b7b2 data_vg active
root@aix1:/ # lspath
Enabled hdisk0 vscsi0
Enabled hdisk0 vscsi1
Enabled hdisk1 vscsi0
Enabled hdisk2 vscsi0
Enabled hdisk1 vscsi1
Enabled hdisk2 vscsi1
root@aix1:/ #

By default, all virtual SCSI disks presented to a client logical partition use the first path by
default. Figure 4-10 illustrates a workload running on the two virtual SCSI disks multipathed
across with all of the disk traffic being transferred through vscsi0, and no traffic being
transferred through vscsi1.

Figure 4-10 Unbalanced vscsi I/O

vscsi_path_to This is disabled by being set to 0 by default. The vscsi_path_to
attribute allows the vscsi adapter to determine the health of its
associated VIO server and in the event of a path failure, it is a
polling interval in seconds where the failed path is polled and once
it is able to resume I/O operations the path is automatically
re-enabled.

Note: If the adapter is in use, you have to make the change permanent with the -P flag.
This change will take effect next time AIX is rebooted.

Attribute Description
Chapter 4. Optimization of an IBM AIX operating system 155

It is not possible to use a round robin or load balancing type policy on a disk device across
two virtual SCSI adapters. A suggested way to get around this is to have your logical volume
spread or striped across an even number of hdisk devices with half transferring its data
through one vscsi adapter and the other half transferring its data through the other vscsi
adapter. The logical volume and file system configuration is detailed in 4.4, “AIX LVM and file
systems” on page 157.

Each path to an hdisk device has a path priority between 1 and 255. The path with the lowest
priority is used as the primary path. To ensure that I/O traffic is transferred through one path
primarily you can change the path priority of each path. In Example 4-37, hdisk2 has a path
priority of 1 for each vscsi path. To balance the I/O, you can change vscsi1 to be the primary
path by setting a higher path priority on the vscsi1 adapter.

Example 4-37 Modifying vscsi path priority

root@aix1:/ # lspath -AEl hdisk2 -p vscsi0
priority 1 Priority True
root@aix1:/ # lspath -AEl hdisk2 -p vscsi1
priority 1 Priority True
root@aix1:/ # chpath -l hdisk2 -a priority=2 -p vscsi0
path Changed
root@aix3:/ #

In Figure 4-11, the exact same test is performed again and we can see that I/O is evenly
distributed between the two vscsi adapters.

Figure 4-11 Balanced vscsi I/O

Another performance implication is the default queue_depth of a VSCSI adapter of 512 per
adapter. However, two command elements are reserved for the adapter itself and three
command elements for each virtual disk.

The number of command elements (queue depth) of a virtual SCSI adapter cannot be
changed, so it is important to work out how many virtual SCSI adapters you will need.

Initially, you need to understand two things to calculate how many virtual SCSI adapters are
be required:

� How many virtual SCSI disks will be mapped to the LPAR?

� What will be the queue_depth of each virtual SCSI disk? Calculating the queue depth for a
disk is covered in detail in “Disk device tuning” on page 143.

The formula for how many virtual drives can be mapped to a virtual SCSI adapter is:

virtual_drives = (512 - 2) / (queue_depth_per_disk + 3)

For example, each virtual SCSI disk has a queue_depth of 32. You can have a maximum of
14 virtual SCSI disks assigned to each virtual SCSI adapter:

(512 - 2) / (32 + 3) = 14.5
156 IBM Power Systems Performance Guide: Implementing and Optimizing

In the event that you require multiple virtual SCSI adapters, Figure 4-12 provides a diagram of
how this can be done.

Figure 4-12 Example AIX LPAR with four vscsi adapters

4.4 AIX LVM and file systems

In this chapter we focus on LVM and file systems performance, and best practices.

4.4.1 Data layout

Data layout is the most important part in I/O performance. The ultimate goal is to balance I/O
across all paths including adapters, loops, disks, and to avoid I/O hotspot. Usually this
contributes more to performance than any I/O tunables. In the following section, we introduce
best practices on balancing I/O, and share some experiences on monitoring.

Random I/O best practice
For random I/O, the aim is to spread I/Os evenly across all physical disks. Here are some
general guidelines:

� On disk subsystem, create arrays of equal size and type.
� Create VGs with one LUN per array.
� Spread all LVs across all PVs in the VG.

Note: IBM PowerVM Virtualization Introduction and Configuration, SG24-7940-04,
explains in detail how to configure virtual SCSI devices.

AIX LPAR

vhost0

vscsi1

vscsi0

vscsi3

vscsi2

vhost1

vhost0

vhost1

P
O

W
E

R
 H

y
p

e
rv

is
o

r

Virtual I/O Server #1 Virtual I/O Server #2

MPIO MPIO
Chapter 4. Optimization of an IBM AIX operating system 157

Sequential I/O best practice
For sequential I/O, the aim is to ensure full stripe write on the storage RAID. Here are some
general guidelines:

1. Create RAID arrays with data spread across a power of two of disks.

a. RAID 5 arrays of 4+1 or 8+1 disks

b. RAID10 arrays of 4 or 8 disks

2. Create VGs with one LUN per array.

3. Create LVs that are spread across all PVs in the VG using a PP or LV strip size larger than
or equal to the full stripe size on the RAID array

a. The number of data disks times the segment size is equal to the array (full) stripe size.

b. 8+1 RAID5 with a 256 KB segment size 8 * 256 KB = 2048 KB stripe size

c. 4+4 RAID10 with a 256 KB segment size 4 * 256 KB = 1024 KB stripe size

4. Application I/Os equal to or a multiple of a full stripe on the RAID array.

How to determine the nature of I/O
We can have an empirical judgement on whether the I/O type is sequential or random. For
example, database files are usually random, and log files are usually sequential. There are
tools to observe this. Example 4-38 shows a filemon approach to identify whether the current
I/O is sequential or random. For more details on the filemon utility, refer to 4.4.4, “The filemon
utility” on page 176.

Example 4-38 filemon usage

filemon -T 1000000 -u -O all,detailed -o fmon.out
sleep 3
trcstop

Example 4-39 shows output of the filemon with the options specified in Example 4-38. The
percent of seeks indicates the nature of the I/O. If seek is near zero, it means the I/O is
sequential. If seek is near 100%, most I/Os are random.

Example 4-39 filemon ouput

--
Detailed Logical Volume Stats (512 byte blocks)
--
...
VOLUME: /dev/sclvdst1 description: N/A
reads: 39 (0 errs)
 read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
 read times (msec):avg 30.485 min 3.057 max 136.050 sdev 31.600
 read sequences: 39
 read seq. lengths:avg 8.0 min 8 max 8 sdev 0.0
writes: 22890(0 errs)
 write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
 write times (msec):avg 15.943 min 0.498 max 86.673 sdev 10.456
 write sequences: 22890

Note: Ensure full stripe write is critical for RAID5 to avoid write penalties. Also we suggest
that you check with your storage vendor for any specific best practice related to your
storage system.
158 IBM Power Systems Performance Guide: Implementing and Optimizing

 write seq. lengths:avg 8.0 min 8 max 8 sdev 0.0
seeks: 22929(100.0%)
 seek dist (blks):init 1097872,

avg 693288.4 min 56 max 2088488 sdev 488635.9
time to next req(msec): avg 2.651 min 0.000 max 1551.894 sdev 53.977
throughput:1508.1 KB/sec
utilization:0.05

RAID policy consideration
Table 4-10 explains the general performance comparison between RAID5 and RAID10. Here
are some general guidelines:

� With enterprise class storage (large cache), RAID-5 performances are comparable to
RAID-10 (for most customer workloads).

� Consider RAID-10 for workloads with a high percentage of random write activity (> 25%)
and high I/O access densities (peak > 50%).

RAID5 is not a good choice for such situations due to write penalty in random write
access. One random write might result in two read operations and two write operations.

Table 4-10 RAID5 and RAID10 performance comparison

4.4.2 LVM best practice

Here are some general guidelines:

� Use scalable VGs for AIX 5.3 and later releases as it has no LVCB in the head of the LV
which ensure better I/O alignment. Also scalable VG has larger maximum PV/LV/PP
numbers per VG.

� Use RAID in preference to LVM mirroring

Using RAID reduces I/Os because there is no additional writes to ensure mirror write
consistency (MWC) compared to LVM mirroring.

� LV striping best practice

– Create a logical volume with the striping option.

• mklv -S <strip-size> ...

• Specify the stripe width with the -C or the -u option, or specify two or more physical
volumes.

• When using LV striping, the number of logical partitions should be a multiple of the
stripe width. Example 4-40 on page 160 shows an example of creating logical
volumes (LV) with 2 MB striping.

Note: Sequential I/O might degrade to random I/O if the data layout is not appropriate. If
you get a filemon result that is contrary to empirical judgement, pay more attention to it. It
might indicate a data layout problem.

I/O characteristics RAID-5 RAID-10

Sequential read Excellent Excellent

Sequential write Excellent Good

Random read Excellent Excellent

Random write Fair Excellent
Chapter 4. Optimization of an IBM AIX operating system 159

Example 4-40 create an LV using LV striping

#mklv -t jfs2 -C 4 -S2M -y lvdata01 datavg 32

– Valid LV strip sizes range from 4 KB to 128 MB in powers of 2 for striped LVs. The SMIT
panels may not show all LV strip options, depending on your AIX version.

– Use an LV strip size larger than or equal to the stripe size on the storage side, to
ensure full stripe write. Usually the LV strip size should be larger than 1 MB. Choose
the strip size carefully, because you cannot change the strip size after you created the
LV.

– Do not use LV striping for storage systems that already have the LUNs striped across
multiple RAID/disk groups such as XIV, SVC, and V7000. We suggest PP striping for
this kind of situation.

� PP striping best practice

– Create LV with the maximum range of physical volumes option to spread PP on
different hdisks in a round robin fashion:

mklv –e x ... as shown in Example 4-41.

Example 4-41 create lv using PP striping

#mklv -t jfs2 -e x -y lvdata02 datavg 32

– Create a volume group with an 8 M,16 M or 32 M PP size. PP size is the strip size.

LVM commands
This section explains LVM commands.

1. lsvg can be used to view VG properties. As in Example 4-42, MAX PVs is equal to 1024,
which means it is a scalable volume group.

Example 4-42 lsvg output

#lsvg datavg
VOLUME GROUP: datavg VG IDENTIFIER:
00f6601100004c000000013a32716c83
VG STATE: active PP SIZE: 32 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 25594 (819008
megabytes)
MAX LVs: 256 FREE PPs: 24571 (786272
megabytes)
LVs: 6 USED PPs: 1023 (32736
megabytes)
OPEN LVs: 4 QUORUM: 2 (Enabled)
TOTAL PVs: 2 VG DESCRIPTORS: 3

Note: We use the glossary strip here. The LV strip size multiplied by the LV stripe
width (number of disks for the striping) equals the stripe size of the LV.

Note: LV striping can specify smaller strip sizes than PP striping, and this
sometimes gets better performance in a random I/O scenario. However, it would be
more difficult to add physical volumes to the LV and rebalance the I/O if using LV
striping. We suggest to use PP striping unless you have a good reason for LV
striping.
160 IBM Power Systems Performance Guide: Implementing and Optimizing

STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 2 AUTO ON: yes
MAX PPs per VG: 32768 MAX PVs: 1024
LTG size (Dynamic): 1024 kilobyte(s) AUTO SYNC: no
HOT SPARE: no BB POLICY: relocatable
MIRROR POOL STRICT: off
PV RESTRICTION: none INFINITE RETRY: no

� Use lslv to view the policy of an LV as shown in Example 4-43.

– INTER-POLICY equal to “maximum” means the LV is using PP striping policy.

– UPPER BOUND specifies the maximum number of PVs the LV can be created on.
1024 means the volume group is scalable VG.

– DEVICESUBTYPE equals to DS_LVZ, which means there is no LVCB in the head of
the LV.

– IN BAND value shows the percentage of partitions that met the intra-policy criteria of
the LV.

Example 4-43 lslv command output

#lslv testlv
LOGICAL VOLUME: testlv VOLUME GROUP: datavg
LV IDENTIFIER: 00f6601100004c000000013a32716c83.5 PERMISSION:
read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 32 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 20 PPs: 20
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: maximum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 1024
MOUNT POINT: N/A LABEL: None
DEVICE UID: 0 DEVICE GID: 0
DEVICE PERMISSIONS: 432
MIRROR WRITE CONSISTENCY: on/ACTIVE
EACH LP COPY ON A SEPARATE PV ?: yes
Serialize IO ?: NO
INFINITE RETRY: no
DEVICESUBTYPE: DS_LVZ
COPY 1 MIRROR POOL: None
COPY 2 MIRROR POOL: None
COPY 3 MIRROR POOL: None

#lslv -l testlv
testlv:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk2 010:000:000 100% 000:010:000:000:000
hdisk1 010:000:000 100% 000:010:000:000:000

� Use lslv -p hdisk# lvname to show the placement of LV on the specific hdisk, as shown
in Example 4-44 on page 162. The state of the physical partition is as follows:

– USED means the physical partition is used by other LVs than the one specified in the
command.
Chapter 4. Optimization of an IBM AIX operating system 161

– Decimal number means the logical partition number of the LV lies on the physical
partition.

– FREE means the physical partition is not used by any LV.

Example 4-44 lslv -p output

lslv -p hdisk2 informixlv
hdisk2:informixlv:/informix
USED USED USED USED USED USED USED USED USED USED 1-10
…
USED USED USED USED 101-104

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 105-114
0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 115-124
0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 125-134
…
0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 332-341
0238 0239 0240 USED USED USED USED USED USED USED 342-351
…

USED USED USED FREE 516-519

� Use lslv -m lvname to show the mapping of the LV, as shown in Example 4-45.

Example 4-45 lslv -m lvname

#lslv -m testlv
testlv:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 2881 hdisk2
0002 2882 hdisk1
0003 2882 hdisk2
0004 2883 hdisk1
0005 2883 hdisk2
0006 2884 hdisk1
0007 2884 hdisk2
0008 2885 hdisk1
0009 2885 hdisk2
0010 2886 hdisk1
0011 2886 hdisk2
0012 2887 hdisk1
0013 2887 hdisk2
0014 2888 hdisk1
0015 2888 hdisk2
0016 2889 hdisk1
0017 2889 hdisk2
0018 2890 hdisk1
0019 2890 hdisk2
0020 2891 hdisk1

� Use lspv -p hdisk1 to get the distribution of LVs on the physical volume, as shown in
Example 4-46.

Example 4-46 lspv -p hdisk#

#lspv -p hdisk1|pg
162 IBM Power Systems Performance Guide: Implementing and Optimizing

hdisk1:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
 1-2560 free outer edge
2561-2561 used outer middle loglv00 jfs2log N/A
2562-2721 used outer middle fslv00 jfs2 /iotest
2722-2881 used outer middle fslv02 jfs2 /ciotest512
2882-2891 used outer middle testlv jfs N/A
2892-5119 free outer middle
5120-7678 free center
7679-10237 free inner middle
10238-12797 free inner edge

Logical track group (LTG) size consideration
When the LVM layer receives an I/O request, it breaks the I/O down into multiple logical track
group (LTG) sized I/O requests, and then submits them to the device driver of the underlying
disks.

Thus LTG is actually the maximum transfer size of an LV, and it is common to all LVs in the
same VG. LTG is similar to the MTU in network communications. Valid LTG sizes include 4 K,
8 K, 16 K, 32 K, 64 K, 128 K, 1 M, 2 M, 4 M, 8 M, 16 M, 32 M, and 128 M.

The LTG size should not be larger than the lowest maximum transfer size of the underlying
disks in the same volume group. Table 4-11 shows the max transfer size attribute in different
I/O layers.

Table 4-11 max transfer sizes in AIX I/O stack

For performance considerations, the LTG size should match the I/O request size of the
application. The default LTG value is set to the lowest maximum transfer size of all the
underlying disks in the same VG. The default is good enough for most situations.

4.4.3 File system best practice

Journaled File System (JFS) is the default file system in AIX 5.2 and earlier AIX releases,
while the Enhanced Journaled File System (JFS2) is the default file system for AIX 5.3 and
later AIX releases. We can exploit JFS/JFS2 features according to application characteristics
for better performance.

Conventional I/O
For read operations, the operating system needs to access the physical disk, read the data
into file system cache, and then copy the cache data into the application buffer. The
application is blocked until the cache data is copied into the application buffer.

For write operations, the operating system copies the data from the application buffer into file
system cache, and flushes the cache to physical disk later at a proper time. The application
returns after the data is copied to the file system cache, and thus there is no block of the
physical disk write.

LVM layer logical track group (LTG)

Disk device drivers max_transfer

Adapter device drivers max_xfer_size
Chapter 4. Optimization of an IBM AIX operating system 163

This kind of I/O is usually suitable for workloads that have a good file system cache hit ratio.
Applications that can benefit from the read ahead and write behind mechanism are also good
candidates for conventional I/O. The following section is a brief introduction of the read ahead
and write behind mechanism.

� Read ahead mechanism

JFS2 read ahead is controlled by two ioo options, j2_minPageReadAhead and
j2_maxPageReadAhead, specifying the minimum page read ahead and maximum page
read ahead, respectively. The j2_minPageReadAhead option is 2 by default, and it is also
the threshold value to trigger an I/O read ahead. You can disable the sequential I/O read
ahead by setting j2_minPageReadAhead to 0, if the I/O pattern is purely random.

The corresponding options for JFS are minpgahead and maxpghead. The functionality is
almost the same as the JFS2 options.

� Write behind mechanism

There are two types of write behind mechanisms for JFS/JFS2, as follows:

– Sequential write behind

JFS2 sequential write behind is controlled by the j2_nPagesPerWriteBehindCluster
option, which is 32 by default. This means that if there are 32 consecutive dirty pages
in the file, a physical I/O will be scheduled. This option is good for smoothing the I/O
rate when you have an occasional I/O burst.

It is worthwhile to change j2_nPagesPerWriteBehindCluster to a larger value if you
want to keep more pages in RAM before scheduling a physical I/O. However, this
should be tried with caution because it might cause a heavy workload to syncd, which
runs every 60 seconds by default.

The corresponding ioo option for JFS is numclust in units of 16 K.

– Random write behind

JFS2 random write behind is used to control the number of random dirty pages to
reduce the workload of syncd. This reduces the possible application pause when
accessing files due to the inode locking when syncd is doing a flush. The random write
behind is controlled by the j2_maxRandomWrite and j2_nRandomCluster ioo option,
and is disabled by default on AIX.

The corresponding ioo option for JFS is maxrandwrt.

As just mentioned, the JFS/JFS2 file system will cache the data in read and write accesses
for future I/O operations. If you do not want to reuse the AIX file system cache, there are
release behind mount options to disable it. Usually these features are good for doing an
archive or recovering from an achive. Table 4-12 on page 165 gives an explanation of these
mount options. Note that these options only apply when doing sequential I/O.

Note: This is a significant difference of AIX JFS/JFS2 from other file sytems. If you
are doing a small sized dd test less than the memory size, you will probably find the
response time on AIX JFS2 to be much longer than on other operating systems. You
can disable the sequential write behind by setting j2_nPagesPerWriteBehindCluster
to 0 to get the same behavior. However, we suggest you keep the default value as it
is, which is usually a better choice for most real workloads.
164 IBM Power Systems Performance Guide: Implementing and Optimizing

Table 4-12 Release behind options

Direct I/O
Compared to conventional I/O, direct I/O bypasses the file system cache layer (VMM), and
exchanges data directly with the disk. An application that already has its own cache buffer is
likely to benefit from direct I/O. To enable direct I/O, mount the file system with the dio option,
as shown in Example 4-47.

Example 4-47 mount with DIO option

#mount -o dio <file system name>

To make the option persistent across a boot, use the chfs command as shown in
Example 4-48 because it adds the mount options to the stanza of the related file system in
/etc/filesystems.

Example 4-48 Use chfs to set the direct I/O option

#chfs -a options=dio /diotest

The application can also open the file with O_DIRECT to enable direct I/O. You can refer to
the manual of the open subroutine on the AIX infocenter for more details at:

http://pic.dhe.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.basetechref/doc/ba
setrf1/open.htm

Table 4-13 explains the alignment requirements for DIO mounted file systems.

Table 4-13 Alignment requirements for DIO and CIO file systems

Example 4-49 on page 166 shows the trace output of a successful DIO write when complying
with the alignment requirements. For details on tracing facilities, refer to “Trace tools and
PerfPMR” on page 316.

Mount options Explanation

rbr Release behind when reading; it only applies when sequential
I/O is detected.

rbw Release behind when writing; it only applies when sequential
I/O is detected.

rbrw The combination of rbr and rbw.

Note: For DIO and CIO, the read/write requests should be aligned on the file block size
boundaries. Both the offset and the length of the I/O request should be aligned. Otherwise,
it might cause severe performance degradation due to I/O demotion.

For a file system with a smaller file block size than 4096, the file must be allocated first to
avoid I/O demotion. Otherwise I/O demotions still occur during the file block allocations.

Available file block sizes at
file system creation

I/O request offset I/O request length

agblksize='512', ‘1024’, 2048’,
‘4096’

Multiple of agblksize Multiple of agblksize
Chapter 4. Optimization of an IBM AIX operating system 165

Example 4-49 successful DIO operations

#trace -aj 59B
#sleep 5; #trcstop
#trcrpt > io.out
#more io.out
...
59B 9.232345185 0.008076 JFS2 IO write: vp =
F1000A0242B95420, sid = 800FC0, offset = 0000000000000000, length = 0200
59B 9.232349035 0.003850 JFS2 IO dio move: vp =
F1000A0242B95420, sid = 800FC0, offset = 0000000000000000, length = 0200
//comments: “JFS2 IO dio move” means dio is attempted.
59B 9.232373074 0.024039 JFS2 IO dio devstrat: bplist
= F1000005B01C0228, vp = F1000A0242B95420, sid = 800FC0, lv blk = 290A, bcount =
0200
//comments: “JFS2 IO dio devstrat” will be displayed if the alignment requirements
are met. The offset is 0, and length is 0x200=512, whilst the DIO file system is
created with agblksize=512.
59B 9.232727375 0.354301 JFS2 IO dio iodone: bp =
F1000005B01C0228, vp = F1000A0242B95420, sid = 800FC0
//comments: “JFS2 IO dio iodone” will be displayed if DIO is finished
successfully.

Example 4-50 shows an I/O demotion situation when failing to comply with the alignment
requirements, and how to identify the root cause of the I/O demotion.

Example 4-50 DIO demotion

#trace -aj 59B
#sleep 5; trcstop
#trcrpt > io.out
#more io.out
...
59B 1.692596107 0.223762 JFS2 IO write: vp =
F1000A0242B95420, sid = 800FC0, offset = 00000000000001FF, length = 01FF
59B 1.692596476 0.000369 JFS2 IO dio move: vp =
F1000A0242B95420, sid = 800FC0, offset = 00000000000001FF, length = 01FF
//comments: a DIO attempt is made, however, the alignment requirements are not
met. The offset and length is both 0x1FF, which is 511. While the file system is
created with agblksize=512.
...
59B 1.692758767 0.018394 JFS2 IO dio demoted: vp =
F1000A0242B95420, mode = 0001, bad = 0002, rc = 0000,
 rc2 = 0000
//comments: “JFS2 IO dio demoted” means there is I/O demotion.

To locate the file involved in the DIO demotion, we can use the svmon command. As
in the trcrpt output above, “sid = 800FC0” when the demoted I/O happens.
#svmon -S 800FC0 -O filename=on
Unit: page

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 800fc0 - clnt /dev/fslv00:5 s 0 0 - -
 /iotest/testw
Then we know that DIO demotion happened on file “/iotest/testw”.
166 IBM Power Systems Performance Guide: Implementing and Optimizing

AIX trace can also be used to find the process or thread that caused the I/O demotion. Refer
to “Trace tools and PerfPMR” on page 316. There is also an easy tool provided to identify I/O
demotion issues.

Concurrent I/O
POSIX standard requires file systems to impose inode locking when accessing files to avoid
data corruption. It is a kind of read write lock that is shared between reads, and exclusive
between writes.

In certain cases, applications might already have a finer granularity lock on their data files,
such as database applications. Inode locking is not necessary in these situations. AIX
provides concurrent I/O for such requirements. Concurrent I/O is based on direct I/O, but
enforces the inode locking in shared mode for both read and write accesses. Multiple threads
can read and write the same file simultaneously using the locking mechanism of the
application.

However, the inode would still be locked in exclusive mode in case the contents of the inode
need to be changed. Usually this happens when extending or truncating a file, because the
allocation map of the file in inode needs to be changed. So it is good practice to use a
fixed-size file in case of CIO.

Figure 4-13 on page 168 gives an example of the inode locking in a JFS2 file system.
Thread0 and thread1 can read data from a shared file simultaneously because a read lock is
in shared mode. However, thread0 cannot write data to the shared file until thread1 finishes
reading the shared file. When the read lock is released, thread0 is able to get a write lock.
Thread1 is blocked on the following read or write attemps because thread0 is holding an
exclusive write lock.

Note: CIO is implemented based on DIO; thus the I/O demotion detection approaches also
apply for CIO mounted file systems.
Chapter 4. Optimization of an IBM AIX operating system 167

Figure 4-13 inode locking in a JFS2 file system

Figure 4-14 on page 169 gives an example of the inode locking in a CIO mounted JFS2 file
system. Thread0 and thread1 can read and write the shared file simultaneously. However,
when thread1 is extending or truncating the file, thread0 blocks read/write attempts. After the
extending or truncating finishes, thread0 and thread1 can simultaneously access the shared
file again.

Read

Write attempts
block until read lock
released by thread1

Write

Compute

Read

Write/read attempts
block until write lock
released by thread0

Write/read

Compute

Compute

Thread 0 Thread 1

Time
Line
168 IBM Power Systems Performance Guide: Implementing and Optimizing

.

Figure 4-14 inode locking in CIO mounted JFS2 file system.

If the application does not have any kind of locking control for shared file access, it might
result in data corruption. Thus CIO is usually only recommended for databases or
applications that already have implemented fine level locking.

To enable concurrent I/O, mount the file system with the cio option as shown in
Example 4-51.

Example 4-51 Mount with the cio option

#mount -o cio <file system name>

To make the option persistent across the boot, use the chfs command shown in
Example 4-52.

Example 4-52 Use chfs to set the concurrent I/O option

#chfs -a options=cio /ciotest

The application can also open the file with O_CIO or O_CIOR to enable concurrent I/O. You
can refer to the manual of the open subroutine on the AIX infocenter for more details.

Note: CIO inode locking still persists when extending or truncating files. So try to set a
fixed size for files and reduce the chances of extending and truncating. Take an Oracle
database as an example: set data files and redo log files to a fixed size and avoid using the
auto extend feature.

Read and write

Write/read attempts
block until

extend/truncate finish

Thread 0 Thread 1

Time
Line

Read and write

Read and write

 Extend/truncate file

Read and write

Compute
Chapter 4. Optimization of an IBM AIX operating system 169

Asynchronous I/O
If an application issues a synchronous I/O operation, it must wait until the I/O completes.
Asynchronous I/O operations run in the background and will not block the application. This
improves performance in certain cases, because you can overlap I/O processing and other
computing tasks in the same thread.

AIO on raw logical volumes is handled by the kernel via the fast path, which will be queued
into the LVM layer directly. Since AIX 5.3 TL5 and AIX 6.1, AIO on CIO mounted file systems
can also submit I/O via the fast path, and AIX 6.1 enables this feature by default. In these
cases, you do not need to tune the AIO subsystems. Example 4-53 shows how to enable the
AIO fastpath for CIO mounted file systems on AIX 5.3, and also the related ioo options in
AIX 6.1.

Example 4-53 AIO fastpath settings in AIX 5.3, AIX 6.1 and later releases

For AIX5.3, the fast path for CIO mounted file system is controlled by aioo option
fsfastpath. Note it is not a persistent setting, so we suggest adding it to the
inittab if you use it.
#aioo -o fsfastpath=1

For AIX6.1 and later release, the fast path for CIO mounted file system is on by
default.
#ioo -L aio_fastpath -L aio_fsfastpath -L posix_aio_fastpath -L
posix_aio_fsfastpath
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
aio_fastpath 1 1 1 0 1 boolean D
--
aio_fsfastpath 1 1 1 0 1 boolean D
--
posix_aio_fastpath 1 1 1 0 1 boolean D
--
posix_aio_fsfastpath 1 1 1 0 1 boolean D
--

For other kinds of AIO operations, the I/O requests are handled by AIO servers. You might
need to tune the maximum number of AIO servers and the service queue size in such cases.
In AIX 5.3, you can change the minservers, maxservers, and maxrequests with smitty aio.
AIX 6.1 has more intelligent control over the AIO subsystem, and the aio tunables are
provided with the ioo command. For legacy AIO, the tunables are aio_maxservers,
aio_minservers, and aio_maxreqs. For POSIX AIO, the tunables are posix_aio_maxservers,
posix_aio_minservers, and posix_aio_maxreqs.

For I/O requests that are handled by AIO servers, you can use ps -kf|grep aio to get the
number of aioserver kernel processes. In AIX6.1, the number of aioservers can be
dynamically adjusted according to the AIO workload. You can use this as an indicator for
tuning the AIO subsystem. If the number of aioservers reaches the maximum, and there is
still lots of free processor and unused I/O bandwidth, you can increase the maximum number
of AIO servers.
Tip

Note: Note: AIO is compatible with all kinds of mount options, including DIO and CIO.
Databases are likely to benefit from AIO.
170 IBM Power Systems Performance Guide: Implementing and Optimizing

Tipcan use the iostat command to retrieve AIO statistics. Table 4-14 shows the iostat
options for AIO, and Example 4-54 gives an example of using iostat for AIO statistics. Note
that at the time of writing this book, iostat statistics are not implemented for file system
fastpath AIO requests used with the CIO option.

Table 4-14 iTipstat options for AIO statistics

Example 4-54 Tip statistics from iostat

ostat -PQ 1 100
System configuration: lcpu=8 maxserver=240
aio: avgc avfc maxgc maxfc maxreqs avg-cpu: % user % sys % idle % iowait
 845.0 0.0 897 0 131072 0.5 4.0 72.8 22.7

Queue# Count Filesystems
129 0 /
130 0 /usr
...
158 845 /iotest

The meanings of the metrics are shown in Table 4-15.

Table 4-15 iostat -A and iostat -P metrics

Options Explanation

-A Display AIO statistics for AIX Legacy AIO.

-P Display AIO statistics for POSIX AIO.

-Q Displays a list of all the mounted file systems and the associated queue
numbers with their request counts.

-q Specifies AIO queues and their request counts.

Column Description

avgc Average global AIO request count per second for the specified
interval.

avfc Average fastpath request count per second for the specified
interval.

maxgc Maximum global AIO request count since the last time this value
was fetched.

maxfc Maximum fastpath request count since the last time this value was
fetched.

maxreqs Specifies the maximum number of asynchronous I/O requests that
can be outstanding at one time.

Note: If the AIO subsystem is not enabled on AIX 5.3, or has not been used on AIX 6.1,
you get the error statement Asynchronous I/O not configured on the system.
Chapter 4. Optimization of an IBM AIX operating system 171

Miscellaneous options
This section provides a few miscellaneous options.

noatime
According to the POSIX standard, every time you access a file, the operating system needs to
update the “last access time” timestamp in the inode.

The noatime option is not necessary for most applications while it might deteriorate
performance in case of heavy inode activities. To enable the noatime option, mount the file
system with noatime:

mount -o noatime <file system name>

To make the option persistent, use the chfs command shown in Example 4-55.

Example 4-55 Use chfs to set the noatime option

#chfs -a options=noatime /ciotest

Use a comma to separate multiple options. To change the default mount options to
CIO and noatime:
#chfs -a options=cio,noatime /datafile

To change to default mount options to rbrw and noatime:
#chfs -a options=rbrw,noatime /archive

Creating an additional JFS/JFS2 log device
The JFS/JFS2 log works as follows:

� AIX uses a special logical volume called the log device as a circular journal for recording
modifications to the file system metadata.

� File system metadata includes the superblock, inodes, indirect data pointers, and
directories.

� When metadata is modified, a duplicate transaction is made to the JFS/JFS2 log.

� When a sync or fsync occurs, commit records are written to the JFS/JFS2 log to indicate
that modified pages in memory have been committed to disk.

By default, all the file systems belong to the same VG and share the same log device. You can
use the lvmstat or filemon commands to monitor the status of the log device as shown in
Example 4-56. You need to enable the statistics for the logical volumes you observe, and
disable the statistics after you finish observing. Note that the first line of lvmstat ouput is a
cumulative value since the recording is enabled.

Example 4-56 Using lvmstat to monitor log device activities

#lvmstat -l loglv00 -e
#lvmstat -l loglv00 5
...
Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 1 1 2579 0 10316 2063.20
...
#lvmstat -l loglv00 -d

If the log device is busy, you can create a dedicated log device for critical file systems, as
shown in Example 4-57 on page 173.
172 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 4-57 Creating an additional JFS/JFS2 log device

Create new JFS or JFS2 log logical volume,
For JFS,
#mklv -t jfslog -y LVname VGname 1 PVname
For JFS2,
#mklv -t jfs2log -y LVname VGname 1 PVname

Unmount the filesystem and then format the log
#/usr/sbin/logform /dev/LVname

Modify /etc/filesystems and LVCB to use this log
#chfs -a log=/dev/LVname /filesystemname

mount filesystem

Using an INLINE log device
If the log device is the bottleneck, creating dedicated log devices is a viable solution.
However, you might have large numbers of file systems that make the administration tedious.
To circumvent this, AIX provides the INLINE log device for JFS2, and you can specify this
option when creating the file system. Then each file system will have its own INLINE log
device.

To create a file system with the INLINE log device:

#crfs -a logname=INLINE …

Or use smitty crfs and choose INLINE for the logical volume log. Note that JFS does not
support INLINE log devices.

Disabling JFS/JFS2 logging
JFS/JFS2 logging is critical for data integrity. However, there are some cases where you can
disable it temporarily for performance. For example, if you are recovering the entire file
system from backup, you can disable JFS/JFS2 logging for fast recovery. After the work is
done, you can enable JFS/JFS2 logging again. Example 4-58 shows how to disable
JFS/JFS2 logging.

Example 4-58 Disabling JFS/JFS2 logging

For JFS,
#mount -o nointegrity /jfs_fs

For JFS2(AIX6.1 and later releases),
#mount -o log=NULL /jfs2_fs

Another scenario for disabling a logging device is when using a RAM disk file system.
Logging is not necessary because there is no persistent storage for RAM disk file systems.
Example 4-59 shows how to create a RAM disk file system on AIX.

Example 4-59 Creating a RAM disk file system on AIX

mkramdisk 1G
/dev/rramdisk0
mkfs -V jfs2 /dev/ramdisk0

Note: We suggest using the INLINE log device with CIO mounted file systems.
Chapter 4. Optimization of an IBM AIX operating system 173

mkfs: destroy /dev/ramdisk0 (y)? y
File system created successfully.
1048340 kilobytes total disk space.
...
mkdir /ramfs
mount -V jfs2 -o log=NULL /dev/ramdisk0 /ramfs
mount
 node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------
...
 /dev/ramdisk0 /ramfs jfs2 Oct 08 22:05 rw,log=NULL

Disk I/O pacing
Disk-I/O pacing is intended to prevent programs with heavy I/O demands from saturing
system I/O resources, and causing other programs with less I/O demand to hang for a long
time. When a process tries to write to a file that already has high-water mark pending writes,
the process is put to sleep until enough I/Os have completed to make the number of pending
writes less than or equal to the low-water mark. This mechanism is somewhat similar to
processor scheduling. Batch jobs that have consumed lots of resources tend to have lower
priority, which ensures that the interactive jobs will run in time.

Disabling I/O pacing usually improves backup jobs and I/O throughput, while enabling I/O
pacing ensures better response time for other kinds of jobs that have less I/O demand.

In AIX 5.3, I/O pacing is disabled by default. In AIX 6.1, the value is set to 8193 for the
high-water mark and 4096 for the low-water mark, respectively. AIX 5.3 and later releases
also support I/O pacing per file system via the mount command, for example:

mount -o minpout=4096 -o maxpout=8193 /filesystem

To make the option persistent across boot, use the chfs command shown in Example 4-60.

Example 4-60 Using chfs to set the I/O pacing option

#chfs -a options=minpout=4096,maxpout=8193 /iotest

File system defragmentation
You might create, extend, modify, or delete the LVs and files during daily maintenance. Also,
the applications might do similar tasks. Due to the dynamic allocation nature of LVM and
JFS/JFS2 file systems, logically contiguous LVs and files can be fragmented.

In such cases, file blocks might be scattered physically. If this happens, sequential access is
no longer sequential and performance is likely to deteriorate. Random access tends to be
affected too, because the seek distance could be longer and take more time. If the files are all
in the memory and the cache hit ratio is high, the performance might be acceptable. However,
if this is not the case, you are likely to experience performance problems.

Example 4-61 on page 175 shows how to determine the fragmentation using the fileplace
command. This is an example with a severe fragmentation problem.

Note: AIX 5.3 does not support disabling JFS2 logging because AIX 6.1 and later AIX
releases do. Use JFS if you need to disable logging.
174 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 4-61 Determine fragmentation using the fileplace command

#fileplace -pv m.txt
File: m.txt Size: 33554432 bytes Vol: /dev/hd3
Blk Size: 4096 Frag Size: 4096 Nfrags: 7920
Inode: 166 Mode: -rw-r--r-- Owner: root Group: system

 Physical Addresses (mirror copy 1) Logical Extent
 ---------------------------------- ----------------
 07351336-07351337 hdisk0 2 frags 8192 Bytes, 0.0% 00010760-00010761
 07351339 hdisk0 1 frags 4096 Bytes, 0.0% 00010763
 07351344 hdisk0 1 frags 4096 Bytes, 0.0% 00010768
…
 06989234 hdisk0 1 frags 4096 Bytes, 0.0% 00074642
 06989239 hdisk0 1 frags 4096 Bytes, 0.0% 00074647
 06989243 hdisk0 1 frags 4096 Bytes, 0.0% 00074651
 06989278 hdisk0 1 frags 4096 Bytes, 0.0% 00074686
 06989306 hdisk0 1 frags 4096 Bytes, 0.0% 00074714
 06989310 hdisk0 1 frags 4096 Bytes, 0.0% 00074718
 unallocated 272 frags 1114112 Bytes 0.0%

 7920 frags over space of 64051 frags: space efficiency = 12.4%
 7919 extents out of 7920 possible: sequentiality = 0.0%

A fast way to solve the problem is to back up the file, delete it, and then restore it as shown in
Example 4-62.

Example 4-62 How to deal with file fragmentation

#cp m.txt m.txt.bak
#fileplace -pv m.txt.bak
File: m.txt.bak Size: 33554432 bytes Vol: /dev/hd3
Blk Size: 4096 Frag Size: 4096 Nfrags: 8192
Inode: 34 Mode: -rw-r--r-- Owner: root Group: system

 Physical Addresses (mirror copy 1) Logical Extent
 ---------------------------------- ----------------
 07218432-07226591 hdisk0 8160 frags 33423360 Bytes, 99.6% 00041696-00049855
 07228224-07228255 hdisk0 32 frags 131072 Bytes, 0.4% 00051488-00051519

 8192 frags over space of 9824 frags: space efficiency = 83.4%
 2 extents out of 8192 possible: sequentiality = 100.0%
#cp m.txt.bak m.txt

Example 4-63 shows an example of how to defragment the file system.

Example 4-63 Defragmenting the file system

#defragfs -r /tmp
Total allocation groups : 64
Allocation groups skipped - entirely free : 52
Allocation groups skipped - too few free blocks : 3
Allocation groups that are candidates for defragmenting : 9
Average number of free runs in candidate allocation groups : 3

#defragfs /tmp
Defragmenting device /dev/hd3. Please wait.

Total allocation groups : 64
Allocation groups skipped - entirely free : 52
Allocation groups skipped - too few free blocks : 5
Allocation groups defragmented : 7

defragfs completed successfully.
Chapter 4. Optimization of an IBM AIX operating system 175

#defragfs -r /tmp
Total allocation groups : 64
Allocation groups skipped - entirely free : 52
Allocation groups skipped - too few free blocks : 5
Allocation groups that are candidates for defragmenting : 7
Average number of free runs in candidate allocation groups : 4

4.4.4 The filemon utility

We now introduce the filemon utility.

Basic filemon utility
filemon is a tool based on the system trace facilities. You usually use filemon to find out the
hotspot in the LVM and file system data layout. filemon can report the following major kinds of
activities:

� Logical file system (lf)
� Virtual memory system (vm)
� Logical volumes (lv)
� Physical volumes (pv)
� All (short for lf, vm, lv, pv)

filemon runs in the background. Explicitly stop filemon at the end of data collection by
executing trcstop. Example 4-64 shows the basic syntax of filemon. In the example, we start
data collection for three seconds and then used trcstop. Also, we used the -T option to
specify a larger trace buffer size (10 MB) than the default (64 KB per processor). The filemon
report file is fmon.out.

Example 4-64 Basic filemon syntax

filemon -T 10000000 -u -O lf,lv,pv,detailed -o fmon.out
sleep 3
trcstop

The filemon report contains two major parts, as follows. The report is generated using the
command in Example 4-64.

Most active files, LVs, and PVs report
As shown in Example 4-65, this can be used to identify hotspots in the data layout.

Example 4-65 Most active LVs and PVs in filemon output

...
Most Active Logical Volumes
--
 util #rblk #wblk KB/s volume description
--

Note: Check for trace buffer wraparounds that may invalidate the filemon report. If you see
“xxx events were lost”, run filemon with a smaller time interval or with a larger -T buffer
value.

A larger trace buffer size results in pinned physical memory; refer to “Trace tools and
PerfPMR” on page 316.
176 IBM Power Systems Performance Guide: Implementing and Optimizing

 1.00 181360 181392 90076.0 /dev/fslv02 /ciotest512b
 0.85 28768 31640 15000.1 /dev/fslv01 /diotest4k
 0.00 0 256 63.6 /dev/fslv00 /iotest512b
...

Most Active Physical Volumes
--
 util #rblk #wblk KB/s volume description
--
 1.00 181360 181640 90137.6 /dev/hdisk1 MPIO FC 2145
 0.80 28768 31640 15000.1 /dev/hdisk2 MPIO FC 2145
...

Detailed statistics data
After you pinpoint the hotspot files or LVs or PVs from the most active reports, you can get the
detailed statistics of these files or LVs or PVs in the “detailed stats” section as shown in
Example 4-66.

The number of reads, writes, and seeks in the monitoring interval is displayed. You can also
see the average I/O size at LV and PV layers in 512-byte blocks, and the min/avg/max
response time in milliseconds.

Example 4-66 Detailed statistics section in the filemon output

...
--
Detailed Logical Volume Stats (512 byte blocks)
--

VOLUME: /dev/fslv02 description: /ciotest512
reads: 22670 (0 errs)
 read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
 read times (msec): avg 0.145 min 0.083 max 7.896 sdev 0.145
 read sequences: 22670
 read seq. lengths: avg 8.0 min 8 max 8 sdev 0.0
writes: 22674 (0 errs)
 write sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
 write times (msec): avg 0.253 min 0.158 max 59.161 sdev 0.717
 write sequences: 22674
 write seq. lengths: avg 8.0 min 8 max 8 sdev 0.0
seeks: 45343 (100.0%) <=indicates random I/O
 seek dist (blks): init 431352,
 avg 697588.3 min 16 max 2083536 sdev 493801.4
time to next req(msec): avg 0.044 min 0.014 max 16.567 sdev 0.085
throughput: 90076.0 KB/sec
utilization: 1.00
...

Hot file detection enhancement
An enhancement to the filemon command was introduced in AIX 7.1, AIX 6.1 TL4, and AIX
5.3 TL11. A more detailed hot files, LVs, and PVs report is provided when using -O hot with
the filemon command.

When -O hot is specified, the hotness of files, LVs, and PVs is sorted from diverse
perspectives, including capacity accessed (CAP_ACC), number of I/O operations per unit of
Chapter 4. Optimization of an IBM AIX operating system 177

data accessed (IOP/#), total number of read operations (#ROP), total number of write
operations (#WOP), time taken per read operation (RTIME), and time taken per write
operation (WTIME). The aim of the report is to guide the administrator in determining which
files, LVs, and PVs are the ideal candidates for migration to SSDs.

filemon -O hot is only supported in offline mode. Example 4-67 shows the syntax of using
filemon for the hot file report. The “fmon.out” hotness report is similar to basic filemon
output, but has more content.

Example 4-67 Generating a hot file report in offline mode

#filemon -o fmon.out -O hot -r myfmon -A -x "sleep 2"
The filemon command store the trace data in “myfmon.trc” and store the symbol
information in “myfmon.syms”, as specified in the -r option. You can re-generate
the hot file report from the trace data file and symbol file whenever you want, as
follows:
#filemon -o fmon1.out -r myfmon -O hot

For more details about hot file detection, refer to AIX 7.1 Difference Guide, SG24-7910.

4.4.5 Scenario with SAP and DB2

Taking into practice the I/O device and file system tuning options discussed in this chapter,
this section focuses on configuring storage for a DB2 database with SAP. This involves using
a standard set of file systems and configuring them to deliver optimal performance.

The physical storage we were using was virtualized by an IBM SAN Volume Controller (SVC),
making this scenario focused on a situation where the external storage is already striped, and
how to configure AIX LVM appropriately.

To provide some background on the storage in this case, an SVC is a storage virtualization
appliance where block storage can be presented to an SVC, and the SVC optimizes the
external storage and manages the allocation to hosts.

The SVC has a concept of a managed disk group, which is LUNs from an external storage
system from the same class of disks grouped together, forming a managed disk group.The
SVC stripes the data across all of the mdisks in the managed disk group.

In our scenario, we have a managed disk group for our DB2 database and SAP binaries, and
a managed disk group for SAP logs.

Figure 4-15 on page 179 provides a diagram of the environment used in this scenario.
178 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 4-15 Storage overview

Table 4-16 provides a summary of the JFS2 file systems that are required for our SAP
instance, their associated logical volumes, volume group, and mount options.

Table 4-16 File system summary for instance SID

As discussed in 4.3.5, “Adapter tuning” on page 150, the first step performed in this example
is to apply the required settings to our fiber channel devices to deliver the maximum
throughput on our AIX system based on our workload (Example 4-68 on page 180).

Logical volume Volume group JFS2 file system Mount options

usrsap_lv sapbin_vg /usr/sap

sapmnt_lv sapbin_vg /sapmnt

db2_lv sapbin_vg /db2 noatime

db2dump_lv sapbin_vg /db2/SID/db2dump

logarch_lv saplog_vg /db2/SID/log_archive rbrw

logret_lv saplog_vg /db2/SID/log_retrieve

logdir_lv saplog_vg /db2/SID/log_dir cio,noatime

db2sid_lv sapdb_vg /db2/SID/db2sid

saptemp_lv sapdb_vg /db2/SID/saptemp1 cio,noatime

sapdata1_lv sapdb_vg /db2/SID/sapdata1 cio,noatime

sapdata2_lv sapdb_vg /db2/SID/sapdata2 cio,noatime

sapdata3_lv sapdb_vg /db2/SID/sapdata3 cio,noatime

sapdata4_lv sapdb_vg /db2/SID/sapdata4 cio,noatime

IBM SAN Volume Controller

AIX System

AIX Volume Group - SAPDB

Managed Disk Group SAPDB
Extent Size 256MB

Striped Virtual Disks (vdisks)

Managed Disks (mdisks)

External Storage System LUNs

PVs

Logical Volumes

jfs2 filesystems

Managed Disk Group SAPLOG
Extent Size 256MB

Striped Virtual Disks (vdisks)

Managed Disks (mdisks)

AIX Volume Group - SAPLOG

PVs

Logical Volumes

jfs2 filesystems

AIX Volume Group - SAPBIN

PVs

Logical Volumes

jfs2 filesystems
Chapter 4. Optimization of an IBM AIX operating system 179

Example 4-68 Set FC adapter attributes

root@aix1:/ # chdev -l fcs0 -a num_cmd_elems=2048 -a max_xfer_size=0x200000 -P
fcs0 changed
root@aix1:/ # chdev -l fcs1 -a num_cmd_elems=2048 -a max_xfer_size=0x200000 -P
fcs1 changed
root@aix1:/ # chdev -l fscsi0 -a fc_err_recov=fast_fail -a dyntrk=yes -P
fscsi0 changed
root@aix1:/ # chdev -l fscsi1 -a fc_err_recov=fast_fail -a dyntrk=yes -P
fscsi1 changed
root@aix1:/ # shutdown -Fr

..... AIX system will reboot

Since we were using storage front-ended by SVC, we needed to ensure that we had the
SDDPCM driver installed. Example 4-69 shows that the latest driver at the time of writing is
installed, and we have nine disks assigned to our system. We have hdisk0, which is the
rootvg presented via virtual SCSI, and the remaining eight disks are presented directly from
SVC to our LPAR using NPIV.

Example 4-69 Confirming that the required drivers are installed

root@aix1:/ # lslpp -l devices.sddpcm*
 Fileset Level State Description
 --
Path: /usr/lib/objrepos
 devices.sddpcm.71.rte 2.6.3.2 COMMITTED IBM SDD PCM for AIX V71

Path: /etc/objrepos
 devices.sddpcm.71.rte 2.6.3.2 COMMITTED IBM SDD PCM for AIX V71
root@aix1:/ # lsdev -Cc disk
hdisk0 Available Virtual SCSI Disk Drive
hdisk1 Available 02-T1-01 MPIO FC 2145
hdisk2 Available 02-T1-01 MPIO FC 2145
hdisk3 Available 02-T1-01 MPIO FC 2145
hdisk4 Available 02-T1-01 MPIO FC 2145
hdisk5 Available 02-T1-01 MPIO FC 2145
hdisk6 Available 02-T1-01 MPIO FC 2145
hdisk7 Available 02-T1-01 MPIO FC 2145
hdisk8 Available 02-T1-01 MPIO FC 2145
root@aix1:/ #

4.3.2, “Disk device tuning” on page 143 explains what attributes should be considered for an
hdisk device. Based on what we knew about our environment from testing in other parts of the
book, we understood that our storage had the capability to easily handle a queue_depth of 64
and a max_transfer size of 1 MB, which is 0x100000.

The device driver we were using was SDDPCM for IBM storage, the recommended algorithm
was load_balance, so we set this attribute on our hdisks. This is also the default.

Example 4-70 demonstrates how to set the attributes on our hdisk devices, which were new
LUNs from our SVC and were not assigned to a volume group.

Example 4-70 Setting hdisk attributes on devices used for SAP file systems

root@aix1:/ # for DISK in `lspv |egrep "None|none" |awk '{print $1}'`
> do
> chdev -l $DISK -a queue_depth=64 -a max_transfer=0x100000 -a algorithm=load_balance
> done
180 IBM Power Systems Performance Guide: Implementing and Optimizing

hdisk1 changed
hdisk2 changed
hdisk3 changed
hdisk4 changed
hdisk5 changed
hdisk6 changed
hdisk7 changed
hdisk8 changed
root@aix1:/ #

Example 4-71 demonstrates how to create our volume groups. In this case, we had three
volume groups, one for SAP binaries, one for the database and one for the logs. We were
using a PP size of 128 MB and creating a scalable type volume group.

Example 4-71 Volume group creation

root@aix1:/ # mkvg -S -y sapbin_vg -s 128 hdisk1 hdisk2
0516-1254 mkvg: Changing the PVID in the ODM.
0516-1254 mkvg: Changing the PVID in the ODM.
sapbin_vg
root@aix1:/ # mkvg -S -y sapdb_vg -s 128 hdisk3 hdisk4 hdisk5 hdisk6
0516-1254 mkvg: Changing the PVID in the ODM.
0516-1254 mkvg: Changing the PVID in the ODM.
0516-1254 mkvg: Changing the PVID in the ODM.
0516-1254 mkvg: Changing the PVID in the ODM.
sapdb_vg
root@aix1:/ # mkvg -S -y saplog_vg -s 128 hdisk7 hdisk8
0516-1254 mkvg: Changing the PVID in the ODM.
0516-1254 mkvg: Changing the PVID in the ODM.
saplog_vg
root@aix1:/ #

4.3.3, “Pbuf on AIX disk devices” on page 148 explains that each hdisk device in a volume
group has a number of pbuf buffers associated with it. For the database and log volume
groups that have most disk I/O activity, we increased the number of buffers from the default of
512 to 1024 buffers. A small amount of additional memory was required, while the status of
the volume group’s blocked I/O count should be monitored with lvmo -av. This is shown in
Example 4-72.

Example 4-72 Increasing the pv buffers on the busiest volume groups

root@aix1:/ # lvmo -v sapdb_vg -o pv_pbuf_count=1024
root@aix1:/ # lvmo -v saplog_vg -o pv_pbuf_count=1024
root@aix1:/ # lvmo -av sapdb_vg
vgname = sapdb_vg
pv_pbuf_count = 1024
total_vg_pbufs = 4096
max_vg_pbufs = 524288
pervg_blocked_io_count = 0
pv_min_pbuf = 512
max_vg_pbuf_count = 0
global_blocked_io_count = 1
root@aix1:/ # lvmo -av saplog_vg
vgname = saplog_vg
pv_pbuf_count = 512
total_vg_pbufs = 1024
max_vg_pbufs = 524288
pervg_blocked_io_count = 1
Chapter 4. Optimization of an IBM AIX operating system 181

pv_min_pbuf = 512
max_vg_pbuf_count = 0
global_blocked_io_count = 1
root@aix1:/ #

When creating our logical volumes, we were using the 4.4.2, “LVM best practice” on
page 159, and using the maximum range of physical volumes (-e x). This method of
spreading the logical volumes over the four disks in the volume group has the following effect:

� 128 MB (the PP size) will be written to the first disk.

� 128 MB (the PP size) will be written to the second disk.

� 128 MB (the PP size) will be written to the third disk.

� 128 MB (the PP size) will be written to the fourth disk.

� Repeat.

To ensure that we did not have a situation where each of the disks in the volume group is busy
one at a time, the order of disks specified on creation of the logical volume dictates the order
of writes.

If you rotate the order of disks when each logical volume is created, you can balance the
writes across all of the disks in the volume group.

Figure 4-16 demonstrates this concept for the four sapdata file systems, which are typically
the most I/O intensive in an SAP system. Ensure that their write order is rotated.

Figure 4-16 Rotating PV order per LV for sapdata file systems

Example 4-73 on page 183 shows our logical volume creation. The following options were set
as part of the logical volume creation:

� The logical volume will be used for a file system type of JFS2 (-t jfs2).

� The logical volume has the range of physical volumes = maximum (-e x).

� The initial size of the file system is equal to the number of PVs in the VG.

� The order of hdisks that the logical volume is created on is rotated.

sapdb_vg

hdisk3

hdisk4

hdisk5

hdisk6

sapdata1_lv sapdata2_lv sapdata3_lv sapdata4_lv

/db2/SID/sapdata1 /db2/SID/sapdata2 /db2/SID/sapdata3 /db2/SID/sapdata4

hdisk4

hdisk5

hdisk6

hdisk3

hdisk5

hdisk6

hdisk3

hdisk4

hdisk6

hdisk3

hdisk4

hdisk5

P
V

 o
rd

er o
f P

P
 w

rites

P
V

 o
rd

er o
f P

P
 w

rites

P
V

 o
rd

er o
f P

P
 w

rites

P
V

 o
rd

er o
f P

P
 w

rites
182 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 4-73 Logical volume creation

root@aix1:/ # mklv -y usrsap_lv -t jfs2 -e x sapbin_vg 2 hdisk1 hdisk2
usrsap_lv
root@aix1:/ # mklv -y sapmnt_lv -t jfs2 -e x sapbin_vg 2 hdisk2 hdisk1
sapmnt_lv
root@aix1:/ # mklv -y db2_lv -t jfs2 -e x sapbin_vg 2 hdisk1 hdisk2
db2_lv
root@aix1:/ # mklv -y db2dump_lv -t jfs2 -e x sapbin_vg 2 hdisk2 hdisk1
db2dump_lv
root@aix1:/ # mklv -y logdir_lv -t jfs2 -e x saplog_vg 2 hdisk7 hdisk8
logdir_lv
root@aix1:/ # mklv -y logarch_lv -t jfs2 -e x saplog_vg 2 hdisk8 hdisk7
logarch_lv
root@aix1:/ # mklv -y logret_lv -t jfs2 -e x saplog_vg 2 hdisk7 hdisk8
logret_lv
root@aix1:/ # mklv -y sapdata1_lv -t jfs2 -e x sapdb_vg 4 hdisk3 hdisk4 hdisk5 hdisk6
sapdata1_lv
root@aix1:/ # mklv -y sapdata2_lv -t jfs2 -e x sapdb_vg 4 hdisk4 hdisk5 hdisk6 hdisk3
sapdata2_lv
root@aix1:/ # mklv -y sapdata3_lv -t jfs2 -e x sapdb_vg 4 hdisk5 hdisk6 hdisk3 hdisk4
sapdata3_lv
root@aix1:/ # mklv -y sapdata4_lv -t jfs2 -e x sapdb_vg 4 hdisk6 hdisk3 hdisk4 hdisk5
sapdata4_lv
root@aix1:/ # mklv -y db2sid_lv -t jfs2 -e x sapdb_vg 4 hdisk3 hdisk4 hdisk5 hdisk6
db2sid_lv
root@aix1:/ # mklv -y saptemp_lv -t jfs2 -e x sapdb_vg 4 hdisk4 hdisk5 hdisk6 hdisk3
saptemp_lv
root@aix1:/ #

4.4.3, “File system best practice” on page 163 explains the options available for JFS2 file
systems. Example 4-74 shows our file system creation with the following options:

� The file systems are JFS2 (-v jfs2).

� The JFS2 log is inline rather than using a JFS2 log logical volume (-a logname=INLINE).

� The file systems will mount automatically on system reboot (-A yes).

� The file systems are enabled for JFS2 snapshots (-isnapshot=yes).

Example 4-74 File system creation

root@aix1:/ # crfs -v jfs2 -d usrsap_lv -m /usr/sap -a logname=INLINE -A yes -a
-isnapshot=yes
File system created successfully.
259884 kilobytes total disk space.
New File System size is 524288
root@aix1:/ # crfs -v jfs2 -d sapmnt_lv -m /sapmnt -a logname=INLINE -A yes -a
-isnapshot=yes
File system created successfully.
259884 kilobytes total disk space.
New File System size is 524288
root@aix1:/ # crfs -v jfs2 -d db2_lv -m /db2 -a logname=INLINE -A yes -a -isnapshot=yes
File system created successfully.
259884 kilobytes total disk space.
New File System size is 524288
root@aix1:/ # crfs -v jfs2 -d db2dump_lv -m /db2/SID/db2dump -a logname=INLINE -A yes -a
-isnapshot=yes
File system created successfully.
259884 kilobytes total disk space.
New File System size is 524288
Chapter 4. Optimization of an IBM AIX operating system 183

root@aix1:/ # crfs -v jfs2 -d logarch_lv -m /db2/SID/log_archive -a logname=INLINE -A yes
-a -isnapshot=yes
File system created successfully.
259884 kilobytes total disk space.
New File System size is 524288
root@aix1:/ # crfs -v jfs2 -d logret_lv -m /db2/SID/log_retrieve -a logname=INLINE -A yes
-a -isnapshot=yes
File system created successfully.
259884 kilobytes total disk space.
New File System size is 524288
root@aix1:/ # crfs -v jfs2 -d logdir_lv -m /db2/SID/log_dir -a logname=INLINE -A yes -a
-isnapshot=yes -a options=cio,rw
File system created successfully.
259884 kilobytes total disk space.
New File System size is 524288
root@aix1:/ # crfs -v jfs2 -d db2sid_lv -m /db2/SID/db2sid -a logname=INLINE -A yes -a
-isnapshot=yes
File system created successfully.
519972 kilobytes total disk space.
New File System size is 1048576
root@aix1:/ # crfs -v jfs2 -d saptemp_lv -m /db2/SID/saptemp1 -a logname=INLINE -A yes -a
-isnapshot=yes -a options=cio,noatime,rw
File system created successfully.
519972 kilobytes total disk space.
New File System size is 1048576
root@aix1:/ # crfs -v jfs2 -d sapdata1_lv -m /db2/SID/sapdata1 -a logname=INLINE -A yes -a
-isnapshot=yes -a options=cio,noatime,rw
File system created successfully.
519972 kilobytes total disk space.
New File System size is 1048576
root@aix1:/ # crfs -v jfs2 -d sapdata2_lv -m /db2/SID/sapdata2 -a logname=INLINE -A yes -a
-isnapshot=yes -a options=cio,noatime,rw
File system created successfully.
519972 kilobytes total disk space.
New File System size is 1048576
root@aix1:/ # crfs -v jfs2 -d sapdata3_lv -m /db2/SID/sapdata3 -a logname=INLINE -A yes -a
-isnapshot=yes -a options=cio,noatime,rw
File system created successfully.
519972 kilobytes total disk space.
New File System size is 1048576
root@aix1:/ # crfs -v jfs2 -d sapdata4_lv -m /db2/SID/sapdata4 -a logname=INLINE -A yes -a
-isnapshot=yes -a options=cio,noatime,rw
File system created successfully.
519972 kilobytes total disk space.
New File System size is 1048576
root@aix1:/ #

The next step was to set the size of our file systems and mount them. Due to the order of
mounting, we needed to create some directories for file systems mounted on top of /db2. It is
also important to note that the sizes used here were purely for demonstration purposes only,
and the inline log expands automatically as the file systems are extended. This is shown in
Example 4-75.

Example 4-75 File system sizing and mounting

root@aix1:/ # chfs -a size=16G /usr/sap ; mount /usr/sap
Filesystem size changed to 33554432
Inlinelog size changed to 64 MB.
root@aix1:/ # chfs -a size=8G /sapmnt ; mount /sapmnt
Filesystem size changed to 16777216
184 IBM Power Systems Performance Guide: Implementing and Optimizing

Inlinelog size changed to 32 MB.
root@aix1:/ # chfs -a size=16G /db2 ; mount /db2
Filesystem size changed to 33554432
Inlinelog size changed to 64 MB.
root@aix1:/ # mkdir /db2/SID
root@aix1:/ # mkdir /db2/SID/db2dump
root@aix1:/ # mkdir /db2/SID/log_archive
root@aix1:/ # mkdir /db2/SID/log_retrieve
root@aix1:/ # mkdir /db2/SID/log_dir
root@aix1:/ # mkdir /db2/SID/db2sid
root@aix1:/ # mkdir /db2/SID/saptemp1
root@aix1:/ # mkdir /db2/SID/sapdata1
root@aix1:/ # mkdir /db2/SID/sapdata2
root@aix1:/ # mkdir /db2/SID/sapdata3
root@aix1:/ # mkdir /db2/SID/sapdata4
root@aix1:/ # chfs -a size=4G /db2/SID/db2dump ; mount /db2/SID/db2dump
Filesystem size changed to 8388608
Inlinelog size changed to 16 MB.
root@aix1:/ # chfs -a size=32G /db2/SID/log_archive ; mount /db2/SID/log_archive
Filesystem size changed to 67108864
Inlinelog size changed to 128 MB.
root@aix1:/ # chfs -a size=32G /db2/SID/log_retrieve ; mount /db2/SID/log_retrieve
Filesystem size changed to 67108864
Inlinelog size changed to 128 MB.
root@aix1:/ # chfs -a size=48G /db2/SID/log_dir ; mount /db2/SID/log_dir
Filesystem size changed to 100663296
Inlinelog size changed to 192 MB.
root@aix1:/ # chfs -a size=16G /db2/SID/db2sid ; mount /db2/SID/db2sid
Filesystem size changed to 33554432
Inlinelog size changed to 64 MB.
root@aix1:/ # chfs -a size=8G /db2/SID/saptemp1 ; mount /db2/SID/saptemp1
Filesystem size changed to 16777216
Inlinelog size changed to 32 MB.
root@aix1:/ # chfs -a size=60G /db2/SID/sapdata1 ; mount /db2/SID/sapdata1
Filesystem size changed to 125829120
Inlinelog size changed to 240 MB.
root@aix1:/ # chfs -a size=60G /db2/SID/sapdata2 ; mount /db2/SID/sapdata2
Filesystem size changed to 125829120
Inlinelog size changed to 240 MB.
root@aix1:/ # chfs -a size=60G /db2/SID/sapdata3 ; mount /db2/SID/sapdata3
Filesystem size changed to 125829120
Inlinelog size changed to 240 MB.
root@aix1:/ # chfs -a size=60G /db2/SID/sapdata4 ; mount /db2/SID/sapdata4
Filesystem size changed to 125829120
Inlinelog size changed to 240 MB.
root@aix1:/ #

To ensure that the file systems are mounted with the correct mount options, run the mount
command. This is shown in Example 4-76.

Example 4-76 Verify that file systems are mounted correctly

root@aix1:/ # mount
 node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------
 /dev/hd4 / jfs2 Oct 08 12:43 rw,log=/dev/hd8
 /dev/hd2 /usr jfs2 Oct 08 12:43 rw,log=/dev/hd8
 /dev/hd9var /var jfs2 Oct 08 12:43 rw,log=/dev/hd8
 /dev/hd3 /tmp jfs2 Oct 08 12:43 rw,log=/dev/hd8
 /dev/hd1 /home jfs2 Oct 08 12:43 rw,log=/dev/hd8
Chapter 4. Optimization of an IBM AIX operating system 185

 /dev/hd11admin /admin jfs2 Oct 08 12:43 rw,log=/dev/hd8
 /proc /proc procfs Oct 08 12:43 rw
 /dev/hd10opt /opt jfs2 Oct 08 12:43 rw,log=/dev/hd8
 /dev/livedump /var/adm/ras/livedump jfs2 Oct 08 12:43 rw,log=/dev/hd8
 /dev/usrsap_lv /usr/sap jfs2 Oct 10 14:59 rw,log=INLINE
 /dev/sapmnt_lv /sapmnt jfs2 Oct 10 14:59 rw,log=INLINE
 /dev/db2_lv /db2 jfs2 Oct 10 15:00 rw,log=INLINE
 /dev/db2dump_lv /db2/SID/db2dump jfs2 Oct 10 15:00 rw,log=INLINE
 /dev/logarch_lv /db2/SID/log_archive jfs2 Oct 10 15:01 rw,log=INLINE
 /dev/logret_lv /db2/SID/log_retrieve jfs2 Oct 10 15:01 rw,log=INLINE
 /dev/logdir_lv /db2/SID/log_dir jfs2 Oct 10 15:02 rw,cio,noatime,log=INLINE
 /dev/db2sid_lv /db2/SID/db2sid jfs2 Oct 10 15:03 rw,log=INLINE
 /dev/saptemp_lv /db2/SID/saptemp1 jfs2 Oct 10 15:03 rw,cio,noatime,log=INLINE
 /dev/sapdata1_lv /db2/SID/sapdata1 jfs2 Oct 10 15:03 rw,cio,noatime,log=INLINE
 /dev/sapdata2_lv /db2/SID/sapdata2 jfs2 Oct 10 15:03 rw,cio,noatime,log=INLINE
 /dev/sapdata3_lv /db2/SID/sapdata3 jfs2 Oct 10 15:03 rw,cio,noatime,log=INLINE
 /dev/sapdata4_lv /db2/SID/sapdata4 jfs2 Oct 10 15:03 rw,cio,noatime,log=INLINE
root@aix1:/ #

4.5 Network

When configuring an AIX system’s networking devices, there are a number of performance
options to consider in the AIX operating system to improve network performance.

This section focuses on these settings in the AIX operating system and the potential gains
from tuning them. 3.7, “Optimal Shared Ethernet Adapter configuration” on page 82 provides
details on PowerVM shared Ethernet tuning.

4.5.1 Network tuning on 10 G-E

10-Gigabit Ethernet adapters provide a higher bandwidth and lower latency than 1-Gigabit
Ethernet adapters. However, it is important to understand that additional processor resources
are required for 10-Gigabit Ethernet, and there are some tuning steps that can be taken to get
good throughput from the adapter.

For optimum performance ensure adapter placement according to Adapter Placement Guide
and size partitions, and optionally VIOS, to fit the expected workload. From the 5803 Adapter
Placement Guide:

� No more than one 10 Gigabit Ethernet adapter per I/O chip.

� No more than one 10 Gigabit Ethernet port per two processors in a system.

� If one 10 Gigabit Ethernet port is present per two processors in a system, no other 10 Gb
or 1 Gb ports should be used.

Note: It is important to consult your storage administrator and SAP basis administrator
during the configuration of storage for a new SAP system. This section simply
demonstrates the concepts discussed in this chapter.

Important: Ensure that your LAN switch is configured appropriately to match how AIX is
configured. Consult your network administrator to ensure that both AIX and the LAN switch
configuration match.
186 IBM Power Systems Performance Guide: Implementing and Optimizing

To ensure that the connected network switch is not overloaded by one or more 10 Gbit ports,
verify that the switch ports have flow control enabled (which is the default for the adapter
device driver).

If the 10 Gbit adapter is dedicated to a partition, enable Large Send offload (LS) and Large
Receive Offload (LRO) for the adapter device driver. The LS will also have to be enabled on
the network interface device level (enX) using the mtu_bypass attribute or by manually
enabling every time after IPL (boot).

For streaming larger data packets over the physical network, consider enabling Jumbo
Frames. However, it requires both endpoint and network switch support to work and will not
have any throughput improvement for packets that can fit in a default MTU size of 1500 bytes.

The entstat command physical adapter (port) statistic No Resource Errors are the number of
incoming packets dropped by the hardware due to lack of resources. This usually occurs
because the receive buffers on the adapter were exhausted; to mitigate, increase the adapter
size of the receive buffers, for example by adjusting “receive descriptor queue size”
(rxdesc_que_sz) and “receive buffer pool size” (rxbuf_pool_sz), which, however, require
deactivating and activating the adapter.

Consider doubling rxdesc_que_sz and set rxbuf_pool_sz to two (2) times the value of
rxdesc_que_sz, with the chdev command, for example:

chdev -Pl ent# -a rxdesc_que_sz=4096 -a rxbuf_pool_sz=8192

Refer to:

http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftu
ngd/adapter_stats.htm

The entstat command physical 10 Gbit Ethernet adapter (port) statistic Lifetime Number of
Transmit Packets/Bytes Overflowed occurs in the case that the adapter has a full transmit
queue and the system is still sending data; the packets chain will be put to an overflow queue.

This overflow queue will be sent when the transmit queue has free entries again. This
behaviour is reflected in the statistics above and these values do not indicate packet loss.

Frequently occurring overflows indicate that the adapter does not have enough resources
allocated for transmit to handle the traffic load. In such a situation, it is suggested that the
number of transmit elements be increased (transmit_q_elem), for example:

chdev -Pl ent# -a transmit_q_elem=2048

Etherchannel link aggregation spreads of outgoing packets are governed by the hash_mode
attribute of the Etherchannel device, and how effective this algorithm is for the actual
workload can be monitored by the entstat command or netstat -v.

Note: Refer to Adapter Placement Guides for further guidance, such as:

� IBM Power 780 Adapter Placement Guide:

http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/topic/p7eab/p7eabprintthis
77x78x.htm

� IBM Power 795 Adapter Placement:

http://publib.boulder.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/ar
eab/areabkickoff.htm
Chapter 4. Optimization of an IBM AIX operating system 187

http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/topic/p7eab/p7eabprintthis77x78x.htm
http://publib.boulder.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/areab/areabkickoff.htm
http://publib.boulder.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/areab/areabkickoff.htm
http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftungd/adapter_stats.htm

In the following example, the 8023ad link aggregation Etherchannel consists of four adapter
ports with the hash_mode load balancing option set to default, in which the adapter selection
algorithm uses the last byte of the destination IP address (for TCP/IP traffic) or MAC address
(for ARP and other non-IP traffic).

The lsattr command:

adapter_names ent0,ent1,ent4,ent6 EtherChannel Adapters
hash_mode default Determines how outgoing adapter is chosen
mode 8023ad EtherChannel mode of operation

Using the entstat command to display the statistics for ent0, ent1, ent4 and ent6, reveals that
the current network workload is not spreading the outgoing traffic balanced over the adapters
in the Etherchannel, as can be seen in Table 4-17. The majority of the outgoing traffic is over
ent6, followed by ent4, but ent0 and ent1 have almost no outgoing traffic.

Changing the hash_mode from default to src_dst_port might improve the balance in this case,
since the outgoing adapter is selected by an algorithm using the combined source and
destination TCP or UDP port values.

Table 4-17 using entstat command to monitor Etherchannel hash_mode spread of outgoing traffic

Refer to:

http://pic.dhe.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.commadm
n/doc/commadmndita/etherchannel_loadbalance.htm

Table 4-18 provides details and some guidance relating to some of the attributes that can be
tuned on the adapter to improve performance.

Table 4-18 10 gigabit adapter settings

Device Transmit
packets

% of total Receive packets % of total

ent0 811028335 3% 1239805118 12%

ent1 1127872165 4% 2184361773 21%

ent4 8604105240 28% 2203568387 21%

ent6 19992956659 65% 4671940746 45%

Total 30535962399 100% 10299676024 100%

Note: The receive traffic is dependent on load balancing and speading from the network
and sending node, and the switch tables of MAC and IP addresses.

Attribute Description Suggested Value

chksum_offload This enables the adapter to compute the
checksum on transmit and receive saving
processor utilization in AIX because AIX does
not have to compute the checksum. This is
enabled by default in AIX.

Enabled

flow_ctrl This specifies whether the adapter should
enable transmit and receive flow control. This
should be enabled in AIX and on the network
switch. This is enabled in AIX by default.

Enabled
188 IBM Power Systems Performance Guide: Implementing and Optimizing

http://pic.dhe.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.commadmn/doc/commadmndita/etherchannel_loadbalance.htm

Table 4-19 provides details and some guidance on the attributes that can be tuned on the
interface to improve performance.

Table 4-19 Interface attributes

4.5.2 Interrupt coalescing

Interrupt coalescing is introduced to avoid flooding the host with too many interrupts.
Consider a typical situation for a 1-Gbps Ethernet: if the average package size is 1000 bytes,
to achieve the full receiving bandwidth, there will be 1250 packets in each processor tick (10
ms). Thus, if there is no interrupt coalescing, there will be 1250 interrupts in each processor
tick, wasting processor time with all the interrupts.

Interrupt coalescing is aimed at reducing the interrupt overhead with minimum latency. There
are two typical types of interrupt coalescing in AIX network adapters.

Most 1-Gbps Ethernet adapters, except the HEA adapter, use the interrupt throttling rate
method, which generates interrupts at fixed frequencies, allowing the bunching of packets
based on time. Such adapters include FC5701, FC5717, FC5767, and so on. The default

jumbo_frames This setting indicates that frames up to 9018
bytes can be transmitted with the adapter. In
networks where jumbo frames are supported
and enabled on the network switches, this
should be enabled in AIX.

Enabled

large_receive This enables AIX to coalesce receive packets
into larger packets before passing them up the
TCP stack.

Enabled

large_send This option enables AIX to build a TCP
message up to 64 KB long and send it in one
call to the Ethernet device driver.

Enabled

Attribute Description Suggested Value

mtu The Media Transmission Unit (MTU) size is the
maximum size of a frame that can be
transmitted by the adapter.

9000 if using jumbo frames

mtu_bypass This allows the interface to have largesend
enabled.

On

rfc1323 This enables TCP window scaling. Enabling this
may improve TCP streaming performance.

Set by “no” tunable to 1

tcp_recvspace This parameter controls how much buffer space
can be consumed by receive buffers, and to
inform the sender how big its transmit window
size can be.

16 k default, 64 k optional

tcp_sendspace This attribute controls how much buffer space
will be used to buffer the data that is transmitted
by the adapter.

16 k default, 64 k optional

thread Known as the dog threads feature, the driver will
queue incoming packets to the thread.

On

Attribute Description Suggested Value
Chapter 4. Optimization of an IBM AIX operating system 189

interrupt rate is controlled by the intr_rate parameter, which is 10000 times per second. The
intr_rate can be changed by the following command:

#chdev -l entX -a intr_rate=<value>

Before you change the value of intr_rate, you might want to check the range of possible
values for it (Example 4-77).

Example 4-77 Value range of intr_rate

#lsattr -Rl entX -a intr_rate
0...65535 (+1)

For lower interrupt overhead and less processor consumption, you can set the interrupt rate
to a lower value. For faster response time, you can set the interrupt rate to a larger value, or
even disable it by setting the value to 0.

Most 10-Gb Ethernet adapters and HEA adapters use a more advanced interrupt coalescing
feature. A timer starts when the first packet arrives, and then the interrupt is delayed for n
microseconds or until m packets arrive.

Refer to Example 4-78 for the HEA adapter where the n value corresponds to rx_clsc_usec,
which equals 95 microseconds by default. The m value corresponds to rx_coalesce, which
equals 16 packets. You can change the n and m values, or disable the interrupt coalescing by
setting rx_clsc=none.

Example 4-78 HEA attributes for interrupt coalescing

lsattr -El ent0
alt_addr 0x000000000000 Alternate Ethernet address True
flow_ctrl no Request Transmit and Receive Flow Control True
jumbo_frames no Request Transmit and Receive Jumbo Frames True
large_receive yes Enable receive TCP segment aggregation True
large_send yes Enable hardware Transmit TCP segmentation True
media_speed Auto_Negotiation Requested media speed True
multicore yes Enable Multi-Core Scaling True
rx_cksum yes Enable hardware Receive checksum True
rx_cksum_errd yes Discard RX packets with checksum errors True
rx_clsc 1G Enable Receive interrupt coalescing True
rx_clsc_usec 95 Receive interrupt coalescing window True
rx_coalesce 16 Receive packet coalescing True
rx_q1_num 8192 Number of Receive queue 1 WQEs True
rx_q2_num 4096 Number of Receive queue 2 WQEs True
rx_q3_num 2048 Number of Receive queue 3 WQEs True
tx_cksum yes Enable hardware Transmit checksum True
tx_isb yes Use Transmit Interface Specific Buffers True
tx_q_num 512 Number of Transmit WQEs True
tx_que_sz 8192 Software transmit queue size True
use_alt_addr no Enable alternate Ethernet address True

Refer to Example 4-79 for the 10-Gb Ethernet adapter where the n value corresponds to
intr_coalesce, which is 5 microseconds by default. The m value corresponds to
receive_chain, which is 16 packets by default. Note the attribute name for earlier adapters
might be different.

Example 4-79 10-Gb Ethernet adapter attributes for interrupt coalescing

lsattr -El ent1
190 IBM Power Systems Performance Guide: Implementing and Optimizing

alt_addr 0x000000000000 Alternate ethernet address True
chksum_offload yes Enable transmit and receive checksum True
delay_open no Enable delay of open until link state is known True
flow_ctrl yes Enable transmit and receive flow control True
intr_coalesce 5 Receive interrupt delay in microseconds True
jumbo_frames no Transmit/receive jumbo frames True
large_receive yes Enable receive TCP segment aggregation True
large_send yes Enable transmit TCP segmentation offload True
rdma_enabled no Enable RDMA support True
receive_chain 16 Receive packet coalesce(chain) count True
receive_q_elem 2048 Number of elements per receive queue True
transmit_chain 8 Transmit packet coalesce(chain) count True
transmit_q_elem 1024 Number of elements per transmit queue True
tx_timeout yes N/A True
use_alt_addr no Enable alternate ethernet address True

You can see the effect of turning off interrupt coalescing in 4.5.5, “Network latency scenario”
on page 196.

Note that interrupt coalescing only applies to network receiving interrupts. TCP/IP
implementation in AIX eliminates the need for network transmit interrupts. The transmit status
is only checked at the next transmit. You can get this from the network statistics (netstat -v),
the interrupt for transmit statistics is always 0.

4.5.3 10-G adapter throughput scenario

Using some of the tunables discussed in 4.5.1, “Network tuning on 10 G-E” on page 186, we
performed some throughput tests between two AIX systems with a dedicated 10-G Ethernet
adapter assigned to each system, with a single network switch in between the two LPARs,
each one in different POWER 750 frames.

A baseline test, and three subsequent tests with different values applied, were performed.
These tests were aimed at maximizing the throughput between two AIX systems.

The baseline test was run with a throughput of 370 MBps.

The first set of changes was to modify the rfc1323, tcp_sendspace and tcp_recvspace
options and to perform another test. Example 4-80 demonstrates how the tunables were
changed on each of the AIX systems.

Example 4-80 Configuration changes for test 1

root@aix1:/ # no -p -o rfc1323=1
Setting rfc1323 to 1
Setting rfc1323 to 1 in nextboot file
Change to tunable rfc1323, will only be effective for future connections
root@aix1:/ # no -p -o tcp_sendspace=1048576
Setting tcp_sendspace to 1048576
Setting tcp_sendspace to 1048576 in nextboot file
Change to tunable tcp_sendspace, will only be effective for future connections
root@aix1:/ # no -p -o tcp_recvspace=1048576
Setting tcp_recvspace to 1048576
Setting tcp_recvspace to 1048576 in nextboot file
Change to tunable tcp_recvspace, will only be effective for future connections

root@aix2:/ # no -p -o rfc1323=1
Chapter 4. Optimization of an IBM AIX operating system 191

Setting rfc1323 to 1
Setting rfc1323 to 1 in nextboot file
Change to tunable rfc1323, will only be effective for future connections
root@aix2:/ # no -p -o tcp_sendspace=1048576
Setting tcp_sendspace to 1048576
Setting tcp_sendspace to 1048576 in nextboot file
Change to tunable tcp_sendspace, will only be effective for future connections
root@aix2:/ # no -p -o tcp_recvspace=1048576
Setting tcp_recvspace to 1048576
Setting tcp_recvspace to 1048576 in nextboot file
Change to tunable tcp_recvspace, will only be effective for future connection

The result of the changes was a throughput of 450 MBps in Test 1.

The next test consisted of enabling jumbo frames in AIX, and ensuring that our switch was
capable of jumbo frames, and had jumbo frame support enabled. Example 4-81
demonstrates how the changes were made. It is important to note that the interface had to be
detached and attached for the change to be applied, so we ran the commands on the HMC
from a console window to each LPAR.

Example 4-81 Configuration changes for Test 2

root@aix1:/ # chdev -l en0 -a state=detach
en0 changed
root@aix1:/ # chdev -l ent0 -a jumbo_frames=yes
ent0 changed
root@aix1:/ # chdev -l en0 -a state=up
en0 changed

root@aix2:/ # chdev -l en0 -a state=detach
en0 changed
root@aix2:/ # chdev -l ent0 -a jumbo_frames=yes
ent0 changed
root@aix2:/ # chdev -l en0 -a state=up
en0 changed

The result of the changes was a throughput of 965 MBps in Test 2.

The final test consisted of turning on the mtu_bypass and thread attributes. Example 4-82
shows how these attributes where set on each of the AIX systems.

Example 4-82 Configuration changes for test 3

root@aix1:/ # chdev -l en0 -a mtu_bypass=on
en0 changed
root@aix1:/ # chdev -l en0 -a thread=on
en0 changed

root@aix2:/ # chdev -l en0 -a mtu_bypass=on
en0 changed
root@aix2:/ # chdev -l en0 -a thread=on
en0 changed

The result of the changes in the final test throughput was 1020 MBps.
192 IBM Power Systems Performance Guide: Implementing and Optimizing

Table 4-20 provides a summary of the test results, and the processor consumption. The more
packets and bandwidth were handled by the 10-G adapter, the more processing power was
required.

Table 4-20 Throughput results summary

4.5.4 Link aggregation

In the case where multiple adapters are allocated to an AIX LPAR, a link aggregation (also
referred to as an EtherChannel device) should be configured to make best use of the two
adapters. The link aggregation can provide redundancy if one adapter fails, and the combined
throughput of the adapters can be made available as a single entity. There are also cases
where due to a large number of packets per second, the latency increases. Having multiple
adapters can counteract this problem.

When configuring any link aggregation configuration, it is important that the network
infrastructure supports the configuration, and is configured appropriately. Unlike in the NIB
mode, all the link aggregation ports should be on the same switch.

Table 4-21 provides a description of some of the attributes to consider, and some guidance on
suggested values.

Table 4-21 Link aggregation attributes

Example 4-83 on page 194 demonstrates how to configure a link aggregation of ports ent0
and ent1 with the attributes suggested in Table 4-21. This can also be performed using
smitty addethch1.

Test Throughput Processor usage

Baseline 370 MBps 1.8 POWER7 Processors

Test 1 450 MBps 2.1 POWER7 Processors

Test 2 965 MBps 1.6 POWER7 Processors

Test 3 1020 MBps 1.87 POWER7 Processors

Attribute Description Suggested value

mode This attribute dictates the type of port channel that is
configured. The mode 8023ad is available, which
enables the adapter’s EtherChannel to negotiate with
a Link Aggregation Control Protocol (LCAP) enabled
switch.

8023ad

hash_mode If the EtherChannel is configured using standard or
8023ad mode, the hash_mode attribute determines
how the outbound adapter for each packet is chosen.
In src_dst_port both the source and destination TCP or
UDP ports are used to determine the outgoing adapter.

src_dst_port

use_jumbo_frame Setting this attribute to yes enables EtherChannel to
use jumbo frames. This allows the Ethernet MTU to
increase to 9000 bytes per frame instead of the default
1500 bytes.

yes
Chapter 4. Optimization of an IBM AIX operating system 193

Example 4-83 Configuring the EtherChannel device

root@aix1:/ # mkdev -c adapter -s pseudo -t ibm_ech -a adapter_names=ent0,ent1 -a
mode=8023ad -a hash_mode=src_dst_port -a use_jumbo_frame=yes
ent2 Available

When 8023.ad link aggregation is configured, you can use entstat -d
<etherchannel_adapter> to check the negotiation status of the EtherChannel, as shown in
Example 4-84.

The aggregation status of the EtherChannel adapter should be Aggregated. And all the
related ports, including AIX side port (Actor) and switch port (Partner), should be in IN_SYNC
status. All other values, such as Negotiating or OUT_OF_SYNC, means that link aggregation is
not successfully established.

Example 4-84 Check the link aggregation status using entstat

#entstat -d ent2

ETHERNET STATISTICS (ent2) :
Device Type: IEEE 802.3ad Link Aggregation
Hardware Address: 00:14:5e:99:52:c0
...
===

Statistics for every adapter in the IEEE 802.3ad Link Aggregation:
--

Number of adapters: 2
Operating mode: Standard mode (IEEE 802.3ad)
IEEE 802.3ad Link Aggregation Statistics:
Aggregation status: Aggregated
 LACPDU Interval: Long Received LACPDUs: 94
 Transmitted LACPDUs: 121
 Received marker PDUs: 0
 Transmitted marker PDUs: 0
 Received marker response PDUs: 0
 Transmitted marker response PDUs: 0
 Received unknown PDUs: 0
 Received illegal PDUs: 0
Hash mode: Source and destination TCP/UDP ports

...

ETHERNET STATISTICS (ent0) :
...
IEEE 802.3ad Port Statistics:

 Actor System Priority: 0x8000
 Actor System: 00-14-5E-99-52-C0
 Actor Operational Key: 0xBEEF
194 IBM Power Systems Performance Guide: Implementing and Optimizing

 Actor Port Priority: 0x0080
 Actor Port: 0x0001
 Actor State:
 LACP activity: Active
 LACP timeout: Long
 Aggregation: Aggregatable
 Synchronization: IN_SYNC
 Collecting: Enabled
 Distributing: Enabled
 Defaulted: False
 Expired: False

 Partner System Priority: 0x007F
 Partner System: 00-24-DC-8F-57-F0
 Partner Operational Key: 0x0002
 Partner Port Priority: 0x007F
 Partner Port: 0x0003
 Partner State:
 LACP activity: Active
 LACP timeout: Short
 Aggregation: Aggregatable
 Synchronization: IN_SYNC
 Collecting: Enabled
 Distributing: Enabled
 Defaulted: False
 Expired: False

 Received LACPDUs: 47
 Transmitted LACPDUs: 60
 Received marker PDUs: 0
 Transmitted marker PDUs: 0
 Received marker response PDUs: 0
 Transmitted marker response PDUs: 0
 Received unknown PDUs: 0
 Received illegal PDUs: 0

...

ETHERNET STATISTICS (ent1) :
...

IEEE 802.3ad Port Statistics:

 Actor System Priority: 0x8000
 Actor System: 00-14-5E-99-52-C0
 Actor Operational Key: 0xBEEF
 Actor Port Priority: 0x0080
 Actor Port: 0x0002
 Actor State:
 LACP activity: Active
 LACP timeout: Long
 Aggregation: Aggregatable
 Synchronization: IN_SYNC
Chapter 4. Optimization of an IBM AIX operating system 195

 Collecting: Enabled
 Distributing: Enabled
 Defaulted: False
 Expired: False

 Partner System Priority: 0x007F
 Partner System: 00-24-DC-8F-57-F0
 Partner Operational Key: 0x0002
 Partner Port Priority: 0x007F
 Partner Port: 0x0004
 Partner State:
 LACP activity: Active
 LACP timeout: Short
 Aggregation: Aggregatable
 Synchronization: IN_SYNC
 Collecting: Enabled
 Distributing: Enabled
 Defaulted: False
 Expired: False

 Received LACPDUs: 47
 Transmitted LACPDUs: 61
 Received marker PDUs: 0
 Transmitted marker PDUs: 0
 Received marker response PDUs: 0
 Transmitted marker response PDUs: 0
 Received unknown PDUs: 0
 Received illegal PDUs: 0

4.5.5 Network latency scenario

In cases where applications are sensitive to latency in the network, there can be significant
performance issues if the network latency is high. 3.7.9, “Measuring latency” on page 90
provides some details on how network latency can be measured.

Figure 4-17 on page 197 provides an overview of a test environment we prepared to measure
the latency between different devices, and virtualization layers.

We had two POWER 750 systems, each with a VIO server sharing Ethernet, and two LPARs
on each system. Each LPAR has a dedicated Ethernet adapter to test the hardware isolated
to an AIX LPAR.

These tests were performed with no load on the POWER 750 systems to establish a baseline
of the expected latency per device.
196 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 4-17 Sample scenario our network latency test results were based on

Table 4-22 provides a summary of our test results. The objective of the test was to compare
the latency between the following components:

� Latency between two 10 G adapters

� Latency between two 1G adapters

� Latency between two virtual adapters on the same machine

� Latency between two LPARs on different machines communicating via shared Ethernet
adapters

Table 4-22 Network latency test results

Source Destination Latency in milliseconds

AIX1 via 10 G Physical Ethernet AIX3 via 10 G Physical Ethernet 0.062 ms

AIX1 via 10 G Physical Ethernet
Interrupt Coalescing Disabled

AIX3 via 10 G Physical Ethernet
Interrupt Coalescing Disabled

0.052 ms

AIX2 via 1 G Physical Ethernet AIX4 via 1 G Physical Ethernet 0.144 ms

AIX2 via 1 G Physical Ethernet
Interrupt Throttling Disabled

AIX4 via 1 G Physical Ethernet
Interrupt Throttling Disabled

0.053 ms

AIX1 via Hyp Virtual Ethernet AIX2 via Hyp Virtual Ethernet 0.038 ms

AIX1

1
G

 P
h

ys
1G

 P
h

ys

1
0

G
 P

hys
10

G
 P

h
ys

virt e
th

virt e
th

virt e
th

virt e
th

SEA

SEA

1
G

 P
h

ys
1G

 P
hys

virt eth
virt e

th

AIX2

AIX3 AIX4

VIO1

VIO2

POWER 750 #1

POWER 750 #2

Network Infrastructure
Chapter 4. Optimization of an IBM AIX operating system 197

Conclusion
After the tests we found that the latency for 10 G Ethernet was significantly less than that of a
1 G adapter under the default setting, which was expected. What was also expected was that
there is low latency across the hypervisor LAN, and some small latency added by using a
shared Ethernet adapter rather than a dedicated adapter.

Also, some transaction type of workload might benefit from disabling interrupt coalescing, as
the response time might be slightly improved. In our tests, you can see that in a 1-Gb
Ethernet scenario, the latency is greatly improved after disabling interrupt coalescing. This
was expected because the 1-Gb adapter waits 100 microseconds on average to generate an
interrupt by default. However, change this value with caution, because it uses more processor
time for faster response.

While this test was completed with no load on the network, AIX LPARs or VIO servers, it is
important to recognize that as workload is added, latency may increase. The more packets
that are being processed by the network, if there is a bottleneck, the more the latency will
increase.

In the case that there are bottlenecks, there are some actions that might be considered:

� If the latency goes up, it is worthwhile measuring the latency between different
components to try to identify a bottleneck.

� If there are a large number of LPARs accessing the same SEA, it may be worthwhile
having multiple SEAs on different Vswitches and grouping a portion of the LPARs on one
Vswitch/SEA and another portion of the LPARs on another Vswitch/SEA.

If there is a single LPAR producing the majority of the network traffic, it may be worthwhile to
dedicate an adapter to that LPAR.

4.5.6 DNS and IPv4 settings

AIX name resolution by default tries to resolve both IPv4 and IPv6 addresses. The first
attempt is to resolve the name locally and then request the DNS server. Some software that
has IPv6 support, such as Oracle 11g, IBM Tivoli Directory Server, may suffer some delay. In
the case of such software, even if hostname is resolved by IPv4, a second attempt takes
place for IPv6 resolution. If the IPv6 resolution is unsuccessful by trying /etc/hosts, the
request goes to the DNS server. If you use only IPv4 and your DNS server is not able to
answer this request, your application waits until the DNS time-out occurs.

If you are not using IPv6, disable IPv6 lookups on AIX adding the following line to
/etc/netsvc.conf:

hosts=local4,bind4

AIX1 via Shared Ethernet AIX3 via Shared Ethernet 0.274 ms

Source Destination Latency in milliseconds

Note: If your NSORDER environment variable is set, it overrides the /etc/netsvc.conf
file.
198 IBM Power Systems Performance Guide: Implementing and Optimizing

4.5.7 Performance impact due to DNS lookups

DNS lookups are often used by commercial applications as well as network daemons to
resolve a given hostname to an IP address. Any delay in lookup due to a firewall, network
congestion, or unreachable network can cause the host network to either retry the lookups or
error out. This might impact some applications that are network sensitive. It is important that
such delays are identified and addressed quickly to avoid any degradation in application
performance.

Identify a lookup failure
In this section, we examine a DNS lookup response delay. The first DNS server is in close
proximity to the requesting server, while the second DNS server is located at another
geographical location (Example 4-85 and Example 4-86).

Example 4-85 DNS server lookup round trip time - Scenario 1: DNS lookup time 26 ms

startsrc -s iptrace -a "-a -b -s 9.184.192.240 /tmp/iptrace_local_dns"
[4587574]
0513-059 The iptrace Subsystem has been started. Subsystem PID is 4587574.
nslookup host.sample.com
Server: 9.184.192.240
Address: 9.184.192.240#53

Non-authoritative answer:
Name: host.sample.com
Address: 9.182.76.38

stopsrc -s iptrace
0513-044 The iptrace Subsystem was requested to stop.
iptrace: unload success!

Example 4-86 DNS server lookup round trip time - Scenario 2: DNS lookup time 247 ms

startsrc -s iptrace -a "-a -b -s 9.3.36.243 /tmp/iptrace_remote_dns"
[4587576]
0513-059 The iptrace Subsystem has been started. Subsystem PID is 4587576.
nslookup remote_host.sample.com 9.3.36.243
Server: 9.3.36.243
Address: 9.3.36.243#53

Name: remote_host.sample.com
Address: 9.3.36.37

stopsrc -s iptrace
0513-044 The iptrace Subsystem was requested to stop.
iptrace: unload success!
Chapter 4. Optimization of an IBM AIX operating system 199

To overcome a delayed lookup, it is advised to configure the netcd daemon on the requesting
host that would cache the response retrieved from resolvers.

4.5.8 TCP retransmissions

TCP retransmissions can occur due to a faulty network, the destination server not able to
receive packets, the destination server not able to send the acknowledgement before the
retransmission timer expires, or the acknowledgement getting lost somewhere in the middle,
to name a few. This leads to the sender retransmitting the packets again, which could
degrade the application performance. High retransmission rates between an application and
database server, for example, need to be identified and corrected. We illustrate some details
on TCP retransmission, the algorithm, and the timer wheel algorithm for retransmission in the
following sections.

Identifying TCP retransmissions
The most common commands or tools to identify TCP retransmissions are netstat and
iptrace. The first step is to use iptrace to identify whether there are TCP retransmissions in
your environment, as shown in Example 4-87.

Example 4-87 Identifying TCP retransmission using iptrace

startsrc -s iptrace -a "-a /tmp/iptrace_retransmission"
stopsrc -s iptrace
ipreport iptrace_retransmission > retransmission.out

cat retransmission.out
====(692 bytes transmitted on interface en0)==== 22:25:50.661774216
ETHERNET packet : [3e:73:a0:00:80:02 -> 00:00:0c:07:ac:12] type 800 (IP)
IP header breakdown:
 < SRC = 9.184.66.46 > (stglbs9.in.ibm.com)
 < DST = 9.122.161.39 > (aiwa.in.ibm.com)
 ip_v=4, ip_hl=20, ip_tos=0, ip_len=678, ip_id=25397, ip_off=0
 ip_ttl=60, ip_sum=2296, ip_p = 6 (TCP)
TCP header breakdown:
 <source port=23(telnet), destination port=32943 >
 th_seq=2129818250, th_ack=2766657268
 th_off=8, flags<PUSH | ACK>
 th_win=65322, th_sum=0, th_urp=0

====(692 bytes transmitted on interface en0)==== 22:25:51.719416953
ETHERNET packet : [3e:73:a0:00:80:02 -> 00:00:0c:07:ac:12] type 800 (IP)
IP header breakdown:
 < SRC = 9.184.66.46 > (stglbs9.in.ibm.com)
 < DST = 9.122.161.39 > (aiwa.in.ibm.com)
 ip_v=4, ip_hl=20, ip_tos=0, ip_len=678, ip_id=25399, ip_off=0
 ip_ttl=60, ip_sum=2294, ip_p = 6 (TCP)
TCP header breakdown:
 <source port=23(telnet), destination port=32943 >
200 IBM Power Systems Performance Guide: Implementing and Optimizing

 th_seq=2129818250, th_ack=2766657268
 th_off=8, flags<PUSH | ACK>
 th_win=65322, th_sum=0, th_urp=0

====(692 bytes transmitted on interface en0)==== 22:25:54.719558660
ETHERNET packet : [3e:73:a0:00:80:02 -> 00:00:0c:07:ac:12] type 800 (IP)
IP header breakdown:
 < SRC = 9.184.66.46 > (stglbs9.in.ibm.com)
 < DST = 9.122.161.39 > (aiwa.in.ibm.com)
 ip_v=4, ip_hl=20, ip_tos=0, ip_len=678, ip_id=25404, ip_off=0
 ip_ttl=60, ip_sum=228f, ip_p = 6 (TCP)
TCP header breakdown:
 <source port=23(telnet), destination port=32943 >
 th_seq=2129818250, th_ack=2766657268
 th_off=8, flags<PUSH | ACK>
 th_win=65322, th_sum=0, th_urp=0

====(692 bytes transmitted on interface en0)==== 22:26:00.719770238
ETHERNET packet : [3e:73:a0:00:80:02 -> 00:00:0c:07:ac:12] type 800 (IP)
IP header breakdown:
 < SRC = 9.184.66.46 > (stglbs9.in.ibm.com)
 < DST = 9.122.161.39 > (aiwa.in.ibm.com)
 ip_v=4, ip_hl=20, ip_tos=0, ip_len=678, ip_id=25418, ip_off=0
 ip_ttl=60, ip_sum=2281, ip_p = 6 (TCP)
TCP header breakdown:
 <source port=23(telnet), destination port=32943 >
 th_seq=2129818250, th_ack=2766657268
 th_off=8, flags<PUSH | ACK>
 th_win=65322, th_sum=0, th_urp=0

====(692 bytes transmitted on interface en0)==== 22:26:12.720165401
ETHERNET packet : [3e:73:a0:00:80:02 -> 00:00:0c:07:ac:12] type 800 (IP)
IP header breakdown:
 < SRC = 9.184.66.46 > (stglbs9.in.ibm.com)
 < DST = 9.122.161.39 > (aiwa.in.ibm.com)
 ip_v=4, ip_hl=20, ip_tos=0, ip_len=678, ip_id=25436, ip_off=0
 ip_ttl=60, ip_sum=226f, ip_p = 6 (TCP)
TCP header breakdown:
 <source port=23(telnet), destination port=32943 >
 th_seq=2129818250, th_ack=2766657268
 th_off=8, flags<PUSH | ACK>
 th_win=65322, th_sum=955e, th_urp=0

The sequence number (th_seq) uniquely identifies a packet, and if you observe multiple
packets with the same sequence number in the ipreport output, then the particular packet is
retransmitted. In the above output, the same packet with 692 bytes is retransmitted four times,
which leads to a delay of 22 seconds.

Besides the ipreport command, you can use the Wireshark tool to analyze the iptrace output
file. Wireshark is an open source network protocol analyzer. It has a GUI interface and can be
used on your laptop. Wireshark can be downloaded at:

http://www.wireshark.org/
Chapter 4. Optimization of an IBM AIX operating system 201

Figure 4-18 shows a TCP retransmission example using Wireshark. Note that data is
collected when the timer wheel algorithm is enabled, which will be introduced later.

Figure 4-18 TCP retransmission example using the Wireshark tool

Conventional TCP retransmission
Conventional TCP retransmission happens in the following conditions:

� Retransmission timer (RTO) expires

This depends on the RTO calculation. RTO is calculated by smoothed Round Trip Time
(RTT). The initial value of RTO is 3 seconds. Because the RTO timer is implemented using
the slower timer, the precision is 500 ms. Considering the variance introduced by the
smoothed RTT algorithm, the normal RTO for intranet is 1.5 seconds or so.

� The connection goes into fast retransmit phase

This is controlled by the no option tcprexmtthresh, which is 3 by default. This means when
three consecutive duplicate ACKs are received, the TCP connection will go to fast
retransmit phase, and the retransmit will happen right away.

If ACK is not received, it doubles the previous RTO for each consecutive retransmission of the
same segment. The RTO will constantly be rto_high (64 seconds by default) if it exceeds
rto_high. The maximum retransmission attempt is set by rto_length, which is 13 by default.
This is called the exponential backoff algorithm.

Example 4-88 gives the tcpdump output in a typical TCP retransmission timeout scenario.

Example 4-88 tcpdump output in typical TCP retransmission scenario

09:14:50.731583 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32761 <nop,nop,timestamp 1351499394
1350655514>
202 IBM Power Systems Performance Guide: Implementing and Optimizing

09:14:52.046243 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32761 <nop,nop,timestamp 1351499396
1350655514> //this is the first retransmission, happens at 1.31 seconds (RTO = 1.5 seconds).
09:14:55.046567 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351499402
1350655514> //2nd retransmission, RTO = 3 seconds, doubled.
09:15:01.047152 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351499414
1350655514> //3rd retransmission, RTO = 6 seconds, doubled.
09:15:13.048261 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351499438
1350655514> //4th retransmission, RTO = 12 seconds, doubled.
09:15:37.050750 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351499486
1350655514> //5th retransmission, RTO = 24 seconds, doubled.
09:16:25.060729 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351499582
1350655514> //6th retransmission, RTO = 48 seconds, doubled.
09:17:29.067259 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351499710
1350655514> //7th retransmission, RTO = 64 seconds, which is equal to rto_high.
09:18:33.074418 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351499838
1350655514> //8th retransmission, RTO = 64 seconds.
09:19:37.082240 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351499966
1350655514>
09:20:41.088737 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351500094
1350655514>
09:21:45.094912 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351500222
1350655514>
09:22:49.110835 IP p750s1aix1.38894 > 10.0.0.89.discard: P 9:11(2) ack 1 win 32844 <nop,nop,timestamp 1351500350
1350655514>
09:23:53.116833 IP p750s1aix1.38894 > 10.0.0.89.discard: R 11:11(0) ack 1 win 32844 <nop,nop,timestamp 1351500478
1350655514> //reach the maximum retransmission attempts, rto_length = 13, reset the connection.

Timer wheel algorithm for fine granularity retransmission
The timer wheel algorithm can be enabled by setting the no option timer_wheel_tick=1 or
larger value. When the timer wheel algorithm is enabled in AIX, TCP uses a fine granularity
retransmission timer with precision equal to timer_wheel_tick * 10ms. When the timer wheel
algorithm is in effect, the RTO is initially set by the no option tcp_low_rto, and is adjusted
based on real RTT values.

When the timer wheel algorithm is in effect, you can observe faster retransmission.
Example 4-89 shows a TCP retransmission scenario when timer_wheel_tick=1 and
tcp_low_rto=20. You can see that after the first conventional retransmission timeout
(RTO=1.5 seconds), the RTO is set to 20 ms and the timer wheel algorithm is enabled, and
the retransmission still uses the "exponential backoff" algorithm.

Example 4-89 tcpdump output for TCP retransmission when the timer wheel algorithm is in effect

10:16:58.014781 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32761
<nop,nop,timestamp 1350657966 1350657589>
10:16:59.543853 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32761
<nop,nop,timestamp 1350657969 1350657589>//1st retransmission timer expiry, RTO=1.5s, which
is using conventional algorithm
10:16:59.556742 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32761
<nop,nop,timestamp 1350657970 1350657589>//2nd retransmission, RTO = 13ms(~20ms), that is
the tcp_low_rto. timer wheel algorithm is in effect.
10:16:59.601225 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350657970 1350657589>//3rd retransmission, RTO = 45ms(~40ms)
10:16:59.681372 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350657970 1350657589>//4th retransmission, RTO = 80ms

Note: The tcpdump output in Example 4-88 and Example 4-89 on page 203 illustrates the
cases when the maximum retransmission attempts are reached, and the connections are
reset. In normal cases, if there is ACK to any of the retransmission packet, the TCP
connection becomes normal again, as shown in Example 4-90 on page 204. When there
are ACKs to the retransmitted packets, the retransmission ends.

Note: The timer wheel algorithm only takes effect after the connection experiences the first
segment lost, that is, the two conditions mentioned in the “conventional TCP
retransmission” section. Otherwise the conventional retransmission algorithm still prevails.
Chapter 4. Optimization of an IBM AIX operating system 203

10:16:59.841581 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350657970 1350657589>//5th retransmission, RTO = 160ms
10:17:00.162023 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350657971 1350657589>
10:17:00.802936 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350657972 1350657589>
10:17:02.084883 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350657975 1350657589>
10:17:04.648699 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350657980 1350657589>
10:17:09.776109 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350657990 1350657589>
10:17:20.030824 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350658010 1350657589>
10:17:40.550530 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350658052 1350657589>
10:18:21.569311 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350658134 1350657589>
10:19:25.657746 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350658262 1350657589>
10:20:29.746815 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350658390 1350657589>
10:21:33.836267 IP p750s1aix1.32859 > 10.0.0.89.discard: P 18:20(2) ack 1 win 32844
<nop,nop,timestamp 1350658518 1350657589>
10:21:33.846253 IP p750s1aix1.32859 > 10.0.0.89.discard: R 20:20(0) ack 1 win 32844
<nop,nop,timestamp 1350658518 1350657589>//reach the maximum retransmission attempts,
TCP_LOW_RTO_LENGTH=15, reset the connection.

The tcp_low_rto is only used once for each TCP connection when the timer wheel algorithm
starts to function. Afterward RTO is calculated based on RTT, and the value is dynamic,
depending on the network conditions. Example 4-90 gives an example on future
retransmission timeouts when the timer wheel algorithm has already been enabled.

Example 4-90 Following retransmission timeout when timer wheel algorithm is already enabled

10:52:07.343305 IP p750s1aix1.32907 > 10.0.0.89.discard: P 152:154(2) ack 1 win 32844
<nop,nop,timestamp 1350662185 1350661918>
10:52:07.482464 IP 10.0.0.89.discard > p750s1aix1.32907: . ack 154 win 65522
<nop,nop,timestamp 1350661918 1350662185>

10:52:22.351340 IP p750s1aix1.32907 > 10.0.0.89.discard: P 154:156(2) ack 1 win 32844
<nop,nop,timestamp 1350662215 1350661918>
10:52:22.583407 IP p750s1aix1.32907 > 10.0.0.89.discard: P 154:156(2) ack 1 win 32844
<nop,nop,timestamp 1350662215 1350661918> //This time the 1st retransmission happens at
230ms. This is based on the real RTO, not tcp_low_rto=20ms anymore.
10:52:23.064068 IP p750s1aix1.32907 > 10.0.0.89.discard: P 154:156(2) ack 1 win 32844
<nop,nop,timestamp 1350662216 1350661918>
10:52:24.025950 IP p750s1aix1.32907 > 10.0.0.89.discard: P 154:156(2) ack 1 win 32844
<nop,nop,timestamp 1350662218 1350661918>
10:52:25.948219 IP p750s1aix1.32907 > 10.0.0.89.discard: P 154:156(2) ack 1 win 32844
<nop,nop,timestamp 1350662222 1350661918>
10:52:29.793564 IP p750s1aix1.32907 > 10.0.0.89.discard: P 154:156(2) ack 1 win 32844
<nop,nop,timestamp 1350662230 1350661918>
10:52:37.484235 IP p750s1aix1.32907 > 10.0.0.89.discard: P 154:156(2) ack 1 win 32844
<nop,nop,timestamp 1350662245 1350661918>
10:52:52.865914 IP p750s1aix1.32907 > 10.0.0.89.discard: P 154:156(2) ack 1 win 32844
<nop,nop,timestamp 1350662276 1350661918>
204 IBM Power Systems Performance Guide: Implementing and Optimizing

10:52:52.885960 IP 10.0.0.89.discard > p750s1aix1.32907: . ack 156 win 65522
<nop,nop,timestamp 1350662009 1350662276> //ACK received for the 7th retransmission, and
then the retransmission ends.

We used the inet discard service to generate the data flow and tcpdump to dump information
of the network packets for the samples in this section. You can duplicate the tests in your own
environment.

For more details, refer to the “Implement lower timer granularity for retransmission of TCP” at:

http://www.ibm.com/developerworks/aix/library/au-lowertime/index.html

4.5.9 tcp_fastlo

Different applications that run on the same partition and communicate to each other via the
loopback interface may gain some performance improvement by enabling the tcp_fastlo
parameter. It will simplify the TCP stack loopback communication.

The tcp_fastlo parameter enables the Fastpath Loopback on AIX. With this option enabled,
systems that make use of local communication can benefit from improved throughput and
processor saving.

Traffic accounting for loopback traffic is not seen on the loopback interface when Fastpath
Loopback is enabled. Instead that traffic is reported by specific counters. The TCP traffic
though is still accounted as usual.

Example 4-91 illustrates the use of the netstat command to get the statistics when Fastpath
Loopback is enabled.

Example 4-91 netstat output showing Fastpath LOOPBACK traffic

netstat -p tcp | grep fastpath
 34 fastpath loopback connections
 14648280 fastpath loopback sent packets (14999698287 bytes)
 14648280 fastpath loopback received packets (14999698287 bytes

The parameter tcp_fastlo_crosswpar is also available to enable the same functionality for
Workload Partition environments.

4.5.10 MTU size, jumbo frames, and performance

Maximum transmit unit (MTU) represents the maximum size that a frame being transmitted to
the network can have. The MTU is a standard value that ideally must be set equally across all
network devices. For Ethernet networks this size is 1500 bytes. Each piece of data
transmitted among the hosts is done in small chunks of MTU size, representing some I/O
system calls for each of them.

Note: For a high-speed network such as 10 Gb, if there is occasional data loss, it should
help to enable the timer wheel algorithm by setting the timer_wheel_tick and tcp_low_rto
no options. Then the TCP retransmission will be much faster than the default.

Due to the default delayed acknowledgment feature of AIX, the real RTT is usually larger
than the value of the no option fastimo. Thus the tcp_low_rto should be larger than the
value of fastimo, unless the no option tcp_nodelayack is set to 1.
Chapter 4. Optimization of an IBM AIX operating system 205

Jumbo frames enable systems for an MTU size of 9000 bytes, meaning that large
transmission of data can be performed with fewer system calls.

Theoretically, since fewer system calls are required to transmit large data, some performance
gain would be observed in some environments. We say theoretically, because to have jumbo
frames enabled on a server, you must ensure that all the other network components,
including other servers, are enabled as well. Devices that do not support jumbo frames would
simply drop the frames and return some ICMP notification message to the sender, causing
retransmission and implying some network performance problems.

Workloads such as web servers, which usually transmit small pieces of data, would usually
not benefit from large MTU sizes.

Note: Before changing the MTU size of the server, ensure that your network supports that
setting.

Important: Some environments block ICMP on firewalls to avoid network attacks. This
means that an ICMP notification message may never reach the sender in these
environments.
206 IBM Power Systems Performance Guide: Implementing and Optimizing

Chapter 5. Testing the environment

In this chapter we provide information on how to establish test plans, test the different
components of your environment at the operating system level, how to interpret information
reported by the analysis tools, how to spot bottlenecks, and how to manage your workload.
This information can be used by those who are either building a system from scratch,
applying all the concepts from the previous chapters, or those who are looking for an
improvement of a production environment.

We help you establish and implement tests of the environment, and give you some guidance
to understand the results of the changes implemented.

The following topics are discussed in this chapter:

� Understand your environment

� Testing the environment

� Testing components

� Understanding processor utilization

� Memory utilization

� Disk storage bottleneck identification

� Network utilization

� Performance analysis at the CEC

� VIOS performance advisor tool and the part command

� Workload management

5

© Copyright IBM Corp. 2013. All rights reserved. 207

5.1 Understand your environment

Submitting an environment for performance analysis is often a complex task. It usually
requires a good knowledge of the workloads running, system capacity, technologies available,
and it involves a lot of tuning and tests.

To understand the limits of the different components of the environment is crucial to establish
baselines and targets and set expectations.

5.1.1 Operating system consistency

While keeping AIX levels up to date is an obvious concern, keeping things consistent is often
overlooked. One LPAR might have been updated with a given APAR or fix, but how to be sure
it was also applied to other LPARs of the same levels? Not maintaining consistency is a way
of introducing performance problems, as some LPARs can remain backlevel or unpatched.
There are many ways to track levels of installed AIX across LPARs. One often overlooked
option is provided by NIM.

The niminv command allows administrators to gather, conglomerate, compare and download
fixes based on installation inventory of NIM objects. It provides an easy method to ensure
systems are at an expected level.

niminv can use any NIM object that contains installation information. Examples include
standalone client, SPOT, lpp_source and mksysb objects.

Using niminv has the following benefits:

� Hardware installation inventory is gathered alongside the software installation inventory.

� Data files are saved with a naming convention that is easily recognizable.

Example 5-1 illustrates using niminv to compare one NIM client (aix13) with another (aix19).
For each NIM client there will be a column. The value will either be listed “same” if the level for
the file set is the same for the target as the base, and “-” if missing and the actual level if
existing but different (higher or lower).

Example 5-1 Using niminv with invcom to compare installed software levels on NIM clients

root@nim1: /usr/sbin/niminv -o invcmp -a targets=‘aix13,aix19' -a base=‘aix13' -a
location='/tmp/123‘
Comparison of aix13 to aix13:aix19 saved to
/tmp/123/comparison.aix13.aix13:aix19.120426230401.
Return Status = SUCCESS

root@nim1: cat /tmp/123/comparison.aix13.aix13:aix19.120426230401
name base 1 2
--- ---------- ---------- ----------
AIX-rpm-7.1.0.1-1 7.1.0.1-1 same same
...lines omitted...
bos.64bit 7.1.0.1 same same
bos.acct 7.1.0.0 same same
bos.adt.base 7.1.0.0 same same
bos.adt.include 7.1.0.1 same same
bos.adt.lib 7.1.0.0 same same
...lines omitted...
bos.rte 7.1.0.1 same same
208 IBM Power Systems Performance Guide: Implementing and Optimizing

...lines omitted...

base = comparison base = aix13
1 = aix13
2 = aix19
'-' = name not in system or resource
same = name at same level in system or resource

5.1.2 Operating system tunable consistency

In environments where tunables beyond the defaults are required, it is important to maintain
an overview of what is applied across an environment, and to ensure that tunables are
consistent and not removed. Also, to keep track of what is applied as a reminder in case some
only need to be temporarily enabled.

System tunable consistency check can be done using the AIX Runtime Expert (ARTEX). The
existing samples in the /etc/security/artex/samples directory can be used to create a new
profile with the artexget command, which can be customized. The corresponding catalog in
/etc/security/artex/catalogs is referred to for retrieving and setting values for that
parameter.

Example 5-2 shows a simple profile, which can be used with ARTEX tools.

Example 5-2 AIX Runtime Expert sample profile

root@nim1: cat /etc/security/artex/samples/aixpertProfile.xml
<?xml version="1.0" encoding="UTF-8"?>
<Profile origin="reference" readOnly="true" version="2.0.0">
 <Catalog id="aixpertParam" version="2.0">
 <Parameter name="securitysetting"/>
 </Catalog>
</Profile>

Example 5-3 shows a simple catalog that can be used with the ARTEX tools with a
corresponding profile. Note the Get and Set stanzas and Command and Filter attributes,
which can be modified and used to create customized catalogues to extend the capabilities of
ARTEX.

Example 5-3 AIX Runtime Expert sample catalog

root@nim1: cat /etc/security/artex/catalogs/aixpertParam.xml
<?xml version="1.0" encoding="UTF-8"?>
<Catalog id="aixpertParam" version="2.0" priority="-1000">

 <ShortDescription><NLSCatalog catalog="artexcat.cat" setNum="2" msgNum="1">System
security level configuration.</NLSCatalog></ShortDescription>

 <Description><NLSCatalog catalog="artexcat.cat" setNum="2" msgNum="2">The aixpert
command sets a variety of system configuration settings to enable the desired
security level.</NLSCatalog></Description>

Note: The artexget and artexset commands execute the <GET> and <SET> sections,
respectively, in the cfgMethod of the Catalog which is defined for a particular parameter.
Chapter 5. Testing the environment 209

 <ParameterDef name="securitysetting" type="string">
 <Get type="current">
 <Command>/etc/security/aixpert/bin/chk_report</Command>
 <Filter>tr -d '\n'</Filter>
 </Get>
 <Get type="nextboot">
 <Command>/etc/security/aixpert/bin/chk_report</Command>
 <Filter>tr -d '\n'</Filter>
 </Get>
 <Set type="permanent">
 <Command>/usr/sbin/aixpert -l %a</Command>
 <Argument>`case %v1 in 'HLS') echo 'h';; 'MLS') echo 'm';; 'LLS') echo 'l';;
'DLS') echo 'd';; 'SCBPS') echo 's';; *) echo 'd';; esac`</Argument>
 </Set>
 </ParameterDef>
</Catalog>

One method to employ these capabilities is to use NIM to perform an ARTEX operation on a
group of systems (Example 5-4); this would provide a centralized solution to GET, SET and
compare (DIFF) the attribute values across the group.

Example 5-4 Using NIM script to run AIX Runtime Expert commands on NIM clients

root@nim1: cat /export/scripts/artex_diff

root@nim1: artexget -r -f txt /etc/security/artex/samples/viosdevattrProfile.xml

root@nim1: nim -o define -t script -a server=master -a
location=/export/scripts/artex_diff artex_diff

root@nim1: nim -o allocate -a script=artex_diff nimclient123

root@nim1: nim -o cust nimclient123
Component name Parameter name Parameter value Additional Action
----------------- ------------------- ----------------- -----------------------
viosdevattrParam reserve_policy no_reserve NEXTBOOT
viosdevattrParam queue_depth 3 NEXTBOOT
...lines omitted...

5.1.3 Size that matters

The world is dynamic. Everything changes all the time and businesses react in the same way.
When you do performance analysis on the environment, you will eventually find that the
problem is not how your systems are configured, but instead how they are sized. The initial
sizing for a specific workload may not fit your business needs after a while. You may find out
that some of your infrastructure is undersized or even oversized for different workloads and
you have to be prepared to change.

5.1.4 Application requirements

Different applications are built for different workloads. An application server built for a demand
of ten thousand users per month may not be ready to serve one hundred thousand users.
This is a typical scenario where no matter how you change your infrastructure environment,
210 IBM Power Systems Performance Guide: Implementing and Optimizing

you do not see real benefits of the changes you have made unless your application is also
submitted to analysis.

5.1.5 Different workloads require different analysis

One of the most important factors when you analyze your systems is that you have a good
understanding of the different types of workloads that you are running. Having that knowledge
will lead you to more objective work and concise results.

5.1.6 Tests are valuable

Each individual infrastructure component has its own limitations, and understanding these
different limits is never easy. For example, similar network adapters show different
throughputs depending on other infrastructure components like the number of switches,
routers, firewalls, and their different configurations. Storage components are not different,
they behave differently depending on different factors.

� Individual tests

A good way to understand the infrastructure limits is by testing the components
individually so that you know what to expect from each of them.

� Integration tests

Integration tests are good to get an idea about how the infrastructures interact and how
that affects the overall throughput.

5.2 Testing the environment

This section offers some suggestions on how to proceed with testing your environment. By
doing so systematically you should be able to determine whether the changes made based
on the concepts presented throughout this book have beneficial results on your environment.

A good thing to keep in mind is that not every system or workload will benefit from the same
tuning.

5.2.1 Planning the tests

When the environment is going to be tested, it is good practice to establish goals and build a
test plan.

The following topics are important things to be considered when building a test plan:

� Infrastructure

Knowledge about the type of machines, their capacity, how they are configured, partition
sizing, resource allocation, and about other infrastructure components (network, storage)
is important. Without this information it is just hard to establish baselines and goals, and to
set expectations.

Note: Testing your network by transmitting packets between two ends separated by a
complex infrastructure, for example, can tell you some data about your environment
throughput but may not tell you much about your individual network components.
Chapter 5. Testing the environment 211

� Component tests

Test one component at a time. Even though during the tests some results may suggest
that other components should be tuned, testing multiple components may not be a good
idea since it involves a lot of variables and may lead to confusing results.

� Correct workload

The type of workload matters. Different workloads will have different impact on the tests,
and thus it is good to tie the proper workload to the component being tested as much as
possible.

� Impact and risk analysis

Tests may stress several components at different levels. The impact analysis of the test
plan should consider as many levels as possible to mitigate any major problems with the
environment.

In the past years, with all the advance of virtualized environments, shared resources have
become a new concern when testing. Stressing a system during a processor test may
result in undesired resource allocations. Stressing the disk subsystem might create
bottlenecks for other production servers.

� Baselines and goals

Establishing a baseline is not always easy. The current environment configuration has to
be evaluated and monitored before going through tests and tuning. Without a baseline,
you have nothing to compare with your results.

Defining the goals you want to achieve depends on understanding of the environment.
Before establishing a performance gain on network throughput of 20%, for instance, you
must first know how the entire environment is configured.

Once you have a good understanding of how your environment behaves and its
limitations, try establishing goals and defining what is a good gain, or what is a satisfactory
improvement.

� Setting the expectations

Do not assume that a big boost in performance can always be obtained. Eventually you
may realize that you are already getting the most out of your environment and further
improvements can only be obtained with new hardware or with better-written applications.

Be reasonable and set expectations of what is a good result for the tests.

Expectations can be met, exceeded, or not met. In any case, tests should be considered
an investment. They can give you a good picture of how the environment is sized, its ability
to accommodate additional workload, estimation of future hardware needs, and the limits
of the systems.

5.2.2 The testing cycle

A good approach to test the environment is to establish cycles of tests, broken into the
following steps:

� Establish a plan

Set the scope of your tests, which components will be tested, which workloads will be
applied, whether they are real or simulation, when tests will be made, how often the
system will be monitored, and so on.

� Make the changes

Change the environment according to the plan, trying to stay as much as possible inside
the scope of the defined plan.
212 IBM Power Systems Performance Guide: Implementing and Optimizing

� Monitor the components

Establish a period to monitor the system and collect performance data for analysis. There
is no best period of time for this, but usually a good idea is to monitor the behavior of the
system for a few days at least and try to identify patterns.

� Compare the results

Compare the performance data collected with the previous results. Analysis of the results
can be used as an input to a new cycle of tests with a new baseline.

You can establish different plans, test each one in different cycles, measure and compare the
results, always aiming for additional improvement. The cycle can be repeated as many times
as necessary.

5.2.3 Start and end of tests

This section provides information on when to start and end the tests.

When to start testing the environment
A good time to start profiling the environment is now. Unless you have a completely static
environment, well sized and stable, tests should be a constant exercise.

Workload demands tend to vary either by increasing or decreasing with time, and analyzing
the environment is a good way to find the right moment to review the resource distribution.

Imagine a legacy system being migrated to a new environment. The natural behavior is for a
new system to demand more resources with time, and the legacy system demanding less.

When to stop testing the environment
Testing the environment takes time, requires resources, and has costs. At some point, tests
will be interrupted by such restrictions.

Despite these restrictions, assuming that a plan has been established at the beginning, the
best moment to stop the tests is when the results achieve at least some of the established
goals.

The reasons why an environment is submitted to tests can vary and no matter what the goals
of the tests are, their results should be meaningful and in accordance with the goals defined,
even if you cannot complete all the tests initially planned.

Systems have limits
Every environment has its limits but only tests will tell what your environment’s are. Eventually
you may find that even though everything has been done on the system side, the
performance of the applications is still not good. You may then want to take a look at the
application architecture.

5.3 Testing components

In this section we try to focus on simple tests of the components, and which tools you can use
to monitor system behavior, to later demonstrate how to read and interpret the measured
values.
Chapter 5. Testing the environment 213

Testing the system components is usually a simple task and can be accomplished by using
native tools available on the operating system by writing a few scripts. For instance, you may
not be able to simulate a multithread workload with the native tools, but you can spawn a few
processor-intensive processes and have an idea of how your system behaves.

Basic network and storage tests are also easy to perform.

How can I know, for example, that the 100 MB file retrieval response time is reasonable? Its
response time is composed of network transmission + disk reading + application overhead. I
should be able to calculate that, in theory.

5.3.1 Testing the processor

Before testing the processing power of the system, it is important to understand the concepts
explained in this book because there are a lot of factors that affect the processor utilization of
the system.

To test the processor effectively, the ideal is to run a processor-intensive workload. Running
complex systems that depend on components such as disk storage or networks might not
result in an accurate test of the environment and can result in misleading data.

The process queue
The process queue is a combination of two different queues: the run queue and wait queue.
Threads on the run queue represent either threads ready to run (awaiting for a processor time
slice) or threads already running. The wait queue holds threads waiting for resources or I/O
requests to complete.

Running workloads with a high number of processes is good for understanding the response
of the system and to try to establish the point at which the system starts to become
unresponsive.

In this section, the nstress suite has been used to put some load on the system. The tests are
made running the ncpu command starting with 16 processes. On another window we
monitored the process queue with the vmstat command, and a one-line script to add time
information at the front of each line to check the output. Table 5-1 illustrates the results.

Table 5-1 Tests run on the system

Note: It is not our intention to demonstrate or compare the behavior of processes and
threads. The intention of this section is to put a load on the processor of our environment
and use the tools to analyze the system behavior.

Processes System response

16 Normal

32 Normal

64 Minimal timing delays

96 Low response. Terminals not
responding to input.

128 Loss of output from vmstat.
214 IBM Power Systems Performance Guide: Implementing and Optimizing

The system performed well until we put almost a hundred processes on the queue. Then the
system started to show slow response and loss of output from vmstat, indicating that the
system was stressed.

A different behavior is shown in Example 5-5. In this test, we started a couple of commands to
create one big file and several smaller files. The system has only a few processes on the run
queue, but this time it also has some on the wait queue, which means that the system is
waiting for I/O requests to complete. Notice that the processor is not overloaded, but there are
processes that will keep waiting on the queue until their I/O operations are completed.

Example 5-5 vmstat output illustrating processor wait time

vmstat 5

System configuration: lcpu=16 mem=8192MB ent=1.00

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec
 2 1 409300 5650 0 0 0 23800 23800 0 348 515 1071 0 21 75 4 0.33 33.1
 1 3 409300 5761 0 0 0 23152 75580 0 340 288 1030 0 24 67 9 0.37 36.9
 3 4 409300 5634 0 0 0 24076 24076 0 351 517 1054 0 21 66 12 0.34 33.8
 2 3 409300 5680 0 0 0 24866 27357 0 353 236 1050 0 22 67 11 0.35 34.8
 0 4 409300 5628 0 0 0 22613 22613 0 336 500 1036 0 21 67 12 0.33 33.3
 0 4 409300 5622 0 0 0 23091 23092 0 338 223 1030 0 21 67 12 0.33 33.3

5.3.2 Testing the memory

This topic addresses some tests that can be made at the operating system level to measure
how much workload your current configuration can take before the system becomes
unresponsive or kills processes.

The system we were using for the tests was a partition with 8 GB of RAM and 512 Mb of
paging-space running AIX 7.1. To simulate the workload, we used the stress tool, publicly
available under GPLv2 license at:

http://weather.ou.edu/~apw/projects/stress/

Packages ready for the AIX can be found at:

http://www.perzl.org/aix

The following tests were intended to test how much memory load our system could take
before starting to swap, become unresponsive, and kill processes.

The first set of tests tried to establish how many processes we could dispatch using different
memory sizes. Before starting the tests, it is important to have a good understanding of virtual
memory concepts and how the AIX Virtual Memory Manager works.

There are a few tunables that will affect the behavior of our system during the tests.

The npswarn, npskill, and nokilluid tunables
When AIX detects that memory resource is running out, it might kill processes to release a
number of paging space pages to continue running. AIX controls this behavior through the
npswarn, npskill and nokilluid tunables.
Chapter 5. Testing the environment 215

� npswarn

The npswarn tunable is a value that defines the minimum number of free paging space
pages that must be available. When this threshold is exceeded, AIX will start sending the
SIGDANGER signal to all processes except kernel processes.

The default action for SIGDANGER is to ignore this signal. Most processes will ignore this
signal. However, the init process does register a signal handler for the SIGDANGER
signal, which will write the warning message Paging space low to the defined system
console.

The kernel processes can be shown using ps -k. Refer to the following website for more
information about kernel processes (kprocs):

http://www-01.ibm.com/support/docview.wss?uid=isg3T1000104

� npskill

If consumption continues, this tunable is the next threshold to trigger; it defines the
minimum number of free paging-space pages to be available before the system starts
killing processes.

At this point, AIX will send SIGKILL to eligible processes depending on the following
factors:

– Whether or not the process has a SIGDANGER handler

By default, SIGKILL will only be sent to processes that do not have a handler for
SIGDANGER. This default behavior is controlled by the vmo option low_ps_handling.

– The value of the nokilluid setting, and the UID of the process, which is discussed in
the following section.

– The age of the process

AIX will first send SIGKILL to the youngest eligible process. This helps to prevent long
running processes against a low paging space condition caused by recently created
processes. Now you understand why you cannot establish telnet or ssh connections to
the system, but still ping it at this point?

However, note that the long running processes could also be killed if the low paging
space condition (below npskill) persists.

When a process is killed, the system logs a message with the label PGSP_KILL, as shown
in Example 5-6.

Example 5-6 errpt output - Process killed by AIX due to lack of paging space

LABEL: PGSP_KILL
IDENTIFIER: C5C09FFA

Date/Time: Thu Oct 25 12:49:32 2012
Sequence Number: 373
Machine Id: 00F660114C00
Node Id: p750s1aix5
Class: S
Type: PERM
WPAR: Global
Resource Name: SYSVMM

Description
SOFTWARE PROGRAM ABNORMALLY TERMINATED

Probable Causes
216 IBM Power Systems Performance Guide: Implementing and Optimizing

http://www-01.ibm.com/support/docview.wss?uid=isg3T1000104

SYSTEM RUNNING OUT OF PAGING SPACE

Failure Causes
INSUFFICIENT PAGING SPACE DEFINED FOR THE SYSTEM
PROGRAM USING EXCESSIVE AMOUNT OF PAGING SPACE

 Recommended Actions
 DEFINE ADDITIONAL PAGING SPACE
 REDUCE PAGING SPACE REQUIREMENTS OF PROGRAM(S)

Detail Data
PROGRAM
stress
USER'S PROCESS ID:
 5112028
PROGRAM'S PAGING SPACE USE IN 1KB BLOCKS
 8

The error message gives the usual information with timestamp, causes, recommended
actions and details of the process.

In the example, the process stress has been killed. For the sake of our tests, it is indeed
the guilty process for inducing shortages on the system. However, in a production
environment the process killed is not always the one that is causing the problems.
Whenever this type of situation is detected on the system, a careful analysis of all
processes running on the system must be done during a longer period. The nmon tool is a
good resource to assist with collecting data to identify the root causes.

In our tests, when the system was overloaded and short on resources, AIX would
sometimes kill our SSH sessions and even the SSH daemon.

� nokilluid

This tunable accepts a UID as a value. All processes owned by UIDs below the defined
value will be out of the killing list. Its default value is zero (0), which means that even
processes owned by the root ID can be killed.

Now that we have some information about these tunables, it is time to proceed with the tests.

One major mistake that people make is to think that a system with certain amounts of
memory can take a load matching that same size. This viewpoint is incorrect; if your system
has 16 GB of memory, it does not mean that all the memory can be made available to your
applications. There are several other processes and kernel structures that also need memory
to work.

In Example 5-7, we illustrate the wrong assumption by adding a load of 64 processes, with
128 MB of size each to push the system to its limits (64 x 128 = 8192). The expected result is
an overload of the virtual memory and a reaction from the operating system.

Example 5-7 stress - 64x 128MB

date ; stress -m 64 --vm-bytes 128M -t 120 ; date
Thu Oct 25 15:22:15 EDT 2012
stress: info: [15466538] dispatching hogs: 0 cpu, 0 io, 64 vm, 0 hdd

Tip: The default value for this tunable is calculated with the formula:

npskill = maximum(64, number_of_paging_space_pages/128)
Chapter 5. Testing the environment 217

stress: FAIL: [15466538] (415) <-- worker 4259916 got signal 9
stress: WARN: [15466538] (417) now reaping child worker processes
stress: FAIL: [15466538] (451) failed run completed in 46s
Thu Oct 25 15:23:01 EDT 2012

As seen in bold, the process receives a SIGKILL less than a minute after being started. The
reason is that the resource consumption levels reached the limits defined by the npswarn and
npskill parameters. This is illustrated in Example 5-8. At 15:22:52 (time is in the last column),
the system is exhausted of free memory pages and showing some paging space activity. At
the last line, the system had a sudden increase on the paging out and replacement, indicating
that the operating system had to make some space by freeing some pages to accommodate
the new allocation.

Example 5-8 vmstat output - 64 x 128 MB

vmstat -t 1

System configuration: lcpu=16 mem=8192MB ent=1.00

kthr memory page faults cpu time
----- ----------- ------------------------- ------------ ----------------------- --------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hr mi se
67 0 1128383 1012994 0 1 0 0 0 0 9 308 972 99 1 0 0 3.82 381.7 15:22:19
65 0 1215628 925753 0 0 0 0 0 0 2 50 1104 99 1 0 0 4.01 400.7 15:22:20
65 0 1300578 840779 0 0 0 0 0 0 10 254 1193 99 1 0 0 3.98 398.2 15:22:21
65 0 1370827 770545 0 0 0 0 0 0 11 54 1252 99 1 0 0 4.00 400.2 15:22:22
64 0 1437708 703670 0 0 0 0 0 0 20 253 1304 99 1 0 0 4.00 400.0 15:22:23
66 0 1484382 656996 0 0 0 0 0 0 11 50 1400 99 1 0 0 4.00 399.6 15:22:24
64 0 1554880 586495 0 0 0 0 0 0 12 279 1481 99 1 0 0 3.99 398.9 15:22:25
64 0 1617443 523931 0 0 0 0 0 0 4 47 1531 99 1 0 0 3.99 398.7 15:22:26
...
38 36 2209482 4526 0 383 770 0 54608 0 467 138 1995 85 15 0 0 3.99 398.7 15:22:52
37 36 2209482 4160 0 364 0 0 62175 0 317 322 1821 87 13 0 0 3.99 399.5 15:22:53
33 40 2209482 4160 0 0 0 0 64164 0 7 107 1409 88 12 0 0 4.00 399.7 15:22:54
34 42 2209544 4173 0 49 127 997 50978 0 91 328 1676 87 13 0 0 4.01 400.8 15:22:55
31 48 2211740 4508 0 52 2563 3403 27556 0 684 147 2332 87 13 0 0 3.98 398.5 15:22:56
Killed

This is normal behavior and indicates that the system is very low on resources (based on
VMM tunable values). In sequence, the system would just kill the vmstat process along with
other application processes in an attempt to free more resources.

Example 5-9 has the svmon output for a similar example (the header has been added
manually to make it easier to identify the columns). This system has 512 MB of paging space,
divided into 131072 x 4096 KB pages. The npswarn and npskill values are 4096 and 1024,
respectively.

Example 5-9 svmon - system running out of paging space

svmon -G -i 5 | egrep "^(s)"
PageSize PoolSize inuse pgsp pin virtual
s 4 KB - 188996 48955 179714 229005
s 4 KB - 189057 48955 179725 229066
s 4 KB - 442293 50306 181663 482303
s 4 KB - 942678 51280 182637 982682
s 4 KB - 1222664 51825 183184 1262663
s 4 KB - 1445145 52253 183612 1485143
s 4 KB - 1660541 52665 184032 1700504
218 IBM Power Systems Performance Guide: Implementing and Optimizing

s 4 KB - 1789863 52916 184283 1829823
s 4 KB - 1846800 53196 184395 1887575
s 4 KB - 1846793 78330 184442 1912289
s 4 KB - 1846766 85789 184462 1921204
s 4 KB - 1846800 94455 184477 1929270
s 4 KB - 1846800 110796 184513 1948082
s 4 KB - 1846800 128755 184543 1963861
s 4 KB - 185921 49540 179756 229097
s 4 KB - 185938 49536 179756 229097

Subtracting the number of paging-space pages allocated from the total number of paging
spaces, the number of free paging-space frames will be:

131072 - 128755 = 2317 (free paging-space frames)

The resulting value is between npswarn and npskill. Thus, at that specific moment, the
system was about to start killing processes and the last two lines of Example 5-9 on page 218
show a sudden drop of the paging-space utilization indicating that some processes have
terminated (in this case they were killed by AIX).

The last example illustrated the behavior of the system when we submitted a load of
processes matching the size of the system memory. Now, let us see what happens when we
use bigger processes (1024 MB each), but with a fewer number of processes (7).

The first thing to notice in Example 5-10 is that the main process got killed by AIX.

Example 5-10 stress output - 7x1024 MB processes

stress -m 7 --vm-bytes 1024M -t 300
stress: info: [6553712] dispatching hogs: 0 cpu, 0 io, 7 vm, 0 hdd
Killed

Although our main process got killed, we still had six processes running, each 1024 MB in
size, as shown in Example 5-11, which also illustrates the memory and paging space
consumption.

Example 5-11 topas output - 7x1024 MB processes

Topas Monitor for host:p750s1aix5 EVENTS/QUEUES FILE/TTY
Tue Oct 30 15:38:17 2012 Interval:2 Cswitch 226 Readch 1617
 Syscall 184 Writech 1825
CPU User% Kern% Wait% Idle% Physc Entc% Reads 9 Rawin 0
Total 76.7 1.4 0.0 21.9 4.00 399.72 Writes 18 Ttyout 739
 Forks 0 Igets 0
Network BPS I-Pkts O-Pkts B-In B-Out Execs 0 Namei 0
Total 2.07K 11.49 8.50 566.7 1.52K Runqueue 7.00 Dirblk 0
 Waitqueue 0.0
Disk Busy% BPS TPS B-Read B-Writ MEMORY
Total 0.5 56.0K 13.99 56.0K 0 PAGING Real,MB 8192
 Faults 5636 % Comp 94
FileSystem BPS TPS B-Read B-Writ Steals 0 % Noncomp 0
Total 1.58K 9.00 1.58K 0 PgspIn 13 % Client 0
 PgspOut 0
Name PID CPU% PgSp Owner PageIn 13 PAGING SPACE
stress 11927714 15.0 1.00G root PageOut 0 Size,MB 512
stress 13893870 14.9 1.00G root Sios 13 % Used 99
stress 5898362 12.5 1.00G root % Free 1
Chapter 5. Testing the environment 219

stress 9109570 12.2 1.00G root NFS (calls/sec)
stress 11206792 11.1 1.00G root SerV2 0 WPAR Activ 0
stress 12976324 10.9 1.00G root CliV2 0 WPAR Total 2
svmon 13959288 0.4 1.13M root SerV3 0 Press: "h"-help
sshd 4325548 0.2 1.05M root CliV3 0 "q"-quit

In Example 5-12, the svmon output illustrates the virtual memory. Even though the system still
shows some free pages, it is almost out of paging space. During this situation, dispatching a
new command could result in a fork() error.

Example 5-12 svmon - 7x 1024MB processes

size inuse free pin virtual mmode
memory 2097152 1988288 108864 372047 2040133 Ded
pg space 131072 130056

 work pers clnt other
pin 236543 0 0 135504
in use 1987398 0 890

PageSize PoolSize inuse pgsp pin virtual
s 4 KB - 1760688 130056 183295 1812533
m 64 KB - 14225 0 11797 14225

Figure 5-1 illustrates a slow increase in memory pages consumption during the execution of
six processes with 1024 MB each. We had almost a linear increase for a few seconds until the
resources were exhausted and the operating system killed some processes.

The same tests running with memory sizes lower than 1024 MB would keep the system
stable.

Figure 5-1 Memory pages slow increase

This very same test, running with 1048 MB processes for example, resulted in a stable
system, with very low variation in memory page consumption.
220 IBM Power Systems Performance Guide: Implementing and Optimizing

These tests are all intended to understand how much load the server could take. Once the
limits were understood, the application could be configured according to its requirements,
behavior, and system limits.

5.3.3 Testing disk storage

When testing the attachment of an IBM Power System to an external disk storage system,
and the actual disk subsystem itself, there are some important considerations before
performing any meaningful testing.

Understanding your workload is a common theme throughout this book, and this is true when
performing meaningful testing. The first thing is to understand the type of workload you want
to simulate and how you are going to simulate it.

There are types of I/O workload characteristics that apply to different applications (Table 5-2).

Table 5-2 I/O workload types

An OLTP transaction processing-based workload typically will have a smaller random I/O
request size between 4 k and 8 k. A data warehouse or batch type workload will typically have
a larger sequential I/O request size of 16 k and larger. Again, a workload such as a backup
server may have a sequential I/O block size of 64 k or greater.

Having a repeatable workload is key to be able to perform a test, make an analysis of the
results, perform any attribute changes, and repeat the test. Ideally if you can perform an
application-driven load test simulating the actual workload, this is going to be the most
accurate method.

There are going to be instances where performing some kind of stress test without any
application-driven load is going to be required. This can be performed with the ndisk64 utility,
which requires minimal setup time and is available on IBM developerworks at:

http://www.ibm.com/developerworks/wikis/display/WikiPtype/nstress

It is imperative to have an understanding of what the I/O requirement of the workload will be,
and the performance capability of attached SAN and storage systems. Using SAP as an
example, the requirement could be 35,000 SAPS, which equates to a maximum of 14,500
16 K random IOPS on a storage system with a 70:30 read/write ratio (these values are taken
from the IBM Storage Sizing Recommendation for SAP V9).

Before running the ndisk64 tool, you need to understand the following:

� What type of workload are you trying to simulate? Random type I/O or sequential type
I/O?

I/O type Description

Sequential Sequential access to disk storage is where typically large I/O
requests are sent from the server, where data is read in order, one
block at a time one after the other. An example of this type of
workload is performing a backup.

Random Random access to disk storage is where data is read in random
order from disk storage, typically in smaller blocks, and it is
sensitive to latency.

Important: When running the ndisk64 utility against a raw device (such as an hdisk) or an
existing file, the data on the device or file will be destroyed.
Chapter 5. Testing the environment 221

http://www.ibm.com/developerworks/wikis/display/WikiPtype/nstress

� What is the I/O request size you are trying to simulate?

� What is the read/write ratio of the workload?

� How long will you run the test? Will any production systems be affected during the running
of the test?

� What is the capability of your SAN and storage system? Is it capable of handling the
workload you are trying to simulate? We found that the ndisk64 tool was cache intensive
on our storage system.

Example 5-13 demonstrates running the ndisk64 tool for a period of 5 minutes with our SAP
workload characteristics on a test logical volume called ndisk_lv.

Example 5-13 Running the ndisk64 tool

root@aix1:/tmp # ./ndisk64 -R -t 300 -f /dev/ndisk_lv -M 20 -b 16KB -s 100G -r 70%
Command: ./ndisk64 -R -t 300 -f /dev/ndisk_lv -M 20 -b 16KB -s 100G -r 70%
 Synchronous Disk test (regular read/write)
 No. of processes = 20
 I/O type = Random
 Block size = 16384
 Read-WriteRatio: 70:30 = read mostly
 Sync type: none = just close the file
 Number of files = 1
 File size = 107374182400 bytes = 104857600 KB = 102400 MB
 Run time = 300 seconds
 Snooze % = 0 percent
----> Running test with block Size=16384 (16KB)
Proc - <-----Disk IO----> | <-----Throughput------> RunTime
 Num - TOTAL IO/sec | MB/sec KB/sec Seconds
 1 - 136965 456.6 | 7.13 7304.84 300.00
 2 - 136380 454.6 | 7.10 7273.65 300.00
 3 - 136951 456.5 | 7.13 7304.08 300.00
 4 - 136753 455.8 | 7.12 7293.52 300.00
 5 - 136350 454.5 | 7.10 7272.05 300.00
 6 - 135849 452.8 | 7.08 7245.31 300.00
 7 - 135895 453.0 | 7.08 7247.49 300.01
 8 - 136671 455.6 | 7.12 7289.19 300.00
 9 - 135542 451.8 | 7.06 7228.26 300.03
 10 - 136863 456.2 | 7.13 7299.38 300.00
 11 - 137152 457.2 | 7.14 7314.78 300.00
 12 - 135873 452.9 | 7.08 7246.57 300.00
 13 - 135843 452.8 | 7.08 7244.94 300.00
 14 - 136860 456.2 | 7.13 7299.19 300.00
 15 - 136223 454.1 | 7.10 7265.29 300.00
 16 - 135869 452.9 | 7.08 7246.39 300.00
 17 - 136451 454.8 | 7.11 7277.23 300.01
 18 - 136747 455.8 | 7.12 7293.08 300.00
 19 - 136616 455.4 | 7.12 7286.20 300.00
 20 - 136844 456.2 | 7.13 7298.40 300.00
TOTALS 2728697 9095.6 | 142.12 Rand procs= 20 read= 70% bs= 16KB
root@aix1:/tmp #

Once the ndisk testing has been completed, if it is possible to check the storage system to
compare the results, and knowing the workload you generated was similar to the workload on
the storage, it is useful to validate the test results.
222 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 5-2 shows the statistics displayed on our storage system, which in this case is an IBM
Storwize V7000 storage system.

Figure 5-2 V7000 volume statistics

It is also important to recognize that disk storage technology is evolving. With the introduction
of solid state drives (SSD), new technologies have been adopted by most storage vendors,
such as automated tiering. An example of this is the Easy Tier® technology used in IBM
storage products such as IBM SAN Volume Controller, IBM DS8000 and IBM Storwize
V7000.

Automated tiering monitors a workload over a period of time, and moves blocks of data in and
out of SSD based on how frequently accessed they are. For example, if you run a test for 48
hours, and during that time the automated tiering starts moving blocks into SSD, the test
results may vary. So it is important to consult your storage administrator on the storage
system’s capabilities as part of the testing process.

5.3.4 Testing the network

Performing network tests on the environment is simpler than the other tests. From the
operating system point of view, there is not much to be tested. Although some tuning can be
performed on both AIX and Virtual I/O Server layers, for example, the information to be
analyzed is more simple. However, when talking about networks, you should always consider
all the infrastructure that may affect the final performance of the environment. Eventually you
may find that the systems themselves are OK but some other network component, such as a
switch, firewall, or router, is affecting the performance of the network.

Latency
Latency can be defined as the time taken to transmit a packet between two points. For the
sake of tests, you can also define latency as the time taken for a packet to be transmitted and
received between two points (round trip).

Note: 5.6, “Disk storage bottleneck identification” on page 251 describes how to interpret
the performance data collected during testing activities.
Chapter 5. Testing the environment 223

Testing the latency is quite simple. In the next examples, we used tools such as tcpdump and
ping to test the latency of our infrastructure, and a shell script to filter data and calculate the
mean latency (Example 5-14).

Example 5-14 latency.sh - script to calculate the mean network latency

#!/usr/bin/ksh

IFACE=en0
ADDR=10.52.78.9
FILE=/tmp/tcpdump.icmp.${IFACE}.tmp

number of ICMP echo-request packets to send
PING_COUNT=10

interval between each echo-request
PING_INTERVAL=10

ICMP echo-request packet size
PING_SIZE=1

do not change this. number of packets to be monitored by tcpdump before
exitting. always PING_COUNT x 2
TCPDUMP_COUNT=$(expr "${PING_COUNT}*2")

tcpdump -l -i ${IFACE} -c ${TCPDUMP_COUNT} "host ${ADDR} and (icmp[icmptype] ==
icmp-echo or icmp[icmptype] == icmp-echoreply)" > ${FILE} 2>&1 &
ping -c ${PING_COUNT} -i ${PING_INTERVAL} -s ${PING_SIZE} ${ADDR} 2>&1

MEANTIME=$(cat ${FILE} | awk -F "[.]" 'BEGIN { printf("scale=2;("); } { if(/ICMP
echo request/) { REQ=$2; getline; REP=$2; printf("(%d-%d)+", REP, REQ); } } END {
printf("0)/1000/10\n"); }' | bc)

echo "Latency is ${MEANTIME}ms"

The script in Example 5-14 has a few parameters that can be changed to test the latency.
This script can be changed to accept some command line arguments instead of having to
change it every time.

Basically the script monitors the ICMP echo-request and echo-reply traffic while performing
some ping with small packet sizes, and calculate the mean round-trip time from a set of
samples.

Example 5-15 latency.sh - script output

ksh latency.sh
PING 10.52.78.9 (10.52.78.9): 4 data bytes
12 bytes from 10.52.78.9: icmp_seq=0 ttl=255
12 bytes from 10.52.78.9: icmp_seq=1 ttl=255
12 bytes from 10.52.78.9: icmp_seq=2 ttl=255
12 bytes from 10.52.78.9: icmp_seq=3 ttl=255
12 bytes from 10.52.78.9: icmp_seq=4 ttl=255
12 bytes from 10.52.78.9: icmp_seq=5 ttl=255
12 bytes from 10.52.78.9: icmp_seq=6 ttl=255
12 bytes from 10.52.78.9: icmp_seq=7 ttl=255
12 bytes from 10.52.78.9: icmp_seq=8 ttl=255
224 IBM Power Systems Performance Guide: Implementing and Optimizing

12 bytes from 10.52.78.9: icmp_seq=9 ttl=255

--- 10.52.78.9 ping statistics ---
10 packets transmitted, 10 packets received, 0% packet loss
Latency is .13ms

Example 5-15 on page 224 shows the output of the latency.sh script containing the mean
latency time of 0.13 ms. This test has been run between two servers connected on the same
subnet sharing the same Virtual I/O server.

In Example 5-16, we used the tcpdump output to calculate the latency. The script filters each
pair of requests and reply packets, extracts the timing portion required to calculate each
packet latency, and finally sums all latencies and divides by the number of packets
transmitted to get the mean latency.

Example 5-16 latency.sh - tcpdump information

cat tcpdump.icmp.en0.tmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on en0, link-type 1, capture size 96 bytes
15:18:13.994500 IP p750s1aix5 > nimres1: ICMP echo request, id 46, seq 1, length 12
15:18:13.994749 IP nimres1 > p750s1aix5: ICMP echo reply, id 46, seq 1, length 12
15:18:23.994590 IP p750s1aix5 > nimres1: ICMP echo request, id 46, seq 2, length 12
15:18:23.994896 IP nimres1 > p750s1aix5: ICMP echo reply, id 46, seq 2, length 12
15:18:33.994672 IP p750s1aix5 > nimres1: ICMP echo request, id 46, seq 3, length 12
15:18:33.994918 IP nimres1 > p750s1aix5: ICMP echo reply, id 46, seq 3, length 12
15:18:43.994763 IP p750s1aix5 > nimres1: ICMP echo request, id 46, seq 4, length 12
15:18:43.995063 IP nimres1 > p750s1aix5: ICMP echo reply, id 46, seq 4, length 12
15:18:53.994853 IP p750s1aix5 > nimres1: ICMP echo request, id 46, seq 5, length 12
15:18:53.995092 IP nimres1 > p750s1aix5: ICMP echo reply, id 46, seq 5, length 12
7508 packets received by filter
0 packets dropped by kernel

Latency times depend mostly on the network infrastructure complexity. This information can
be useful if you are preparing the environment for applications that transmit a lot of small
packets and demand low network latency.

Transmission tests - TCP_RR
Request and Response tests measure the number of transactions (basic connect and
disconnect) that your servers and network infrastructure are able to handle. These tests were
performed with the netperf tool (Example 5-17).

Example 5-17 netperf - TCP_RR test

./netperf -t TCP_RR -H 10.52.78.47
Netperf version 5.3.7.5 Jul 23 2009 16:57:35
TCP REQUEST/RESPONSE TEST: 10.52.78.47
 (+/-5.0% with 99% confidence) - Version: 5.3.7.5 Jul 23 2009 16:57:41
Local /Remote ----------------
Socket Size Request Resp. Elapsed Response Time
Send Recv Size Size Time (iter) ------- --------
bytes Bytes bytes bytes secs. TRs/sec millisec*host

262088 262088 100 200 4.00(03) 3646.77 0.27
262088 262088
Chapter 5. Testing the environment 225

Transmission tests - TCP_STREAM
These tests attempt to send the most data possible from one side to another in a certain
period and give the total throughput of the network. These tests were performed with the
netperf tool (Example 5-18).

Example 5-18 netperf - TCP_STREAM test

./netperf -t TCP_STREAM -H 10.52.78.47
Netperf version 5.3.7.5 Jul 23 2009 16:57:35
TCP STREAM TEST: 10.52.78.47
 (+/-5.0% with 99% confidence) - Version: 5.3.7.5 Jul 23 2009 16:57:41
Recv Send Send ---------------------
Socket Socket Message Elapsed Throughput
Size Size Size Time (iter) ---------------------
bytes bytes bytes secs. 10^6bits/s KBytes/s

262088 262088 100 4.20(03) 286.76 35005.39

Several tests other than TCP_STREAM and TCP_RR are available with the netperf tool that
can be used to test the network. Remember that network traffic also consumes memory and
processor time. The netperf tool can provide some processor utilization statistics as well, but
we suggest that the native operating system tools be used instead.

5.4 Understanding processor utilization

This section provides details regarding processor utilization.

5.4.1 Processor utilization

In past readings, the processor utilization on old single-threaded systems used to be straight
forward. Tools such as topas, sar and vmstat provided simple values that would let you know
exactly how much processor utilization you had.

With the introduction of multiple technologies in the past years, especially the simultaneous
multithreading on POWER5 systems, understanding processor utilization on systems
became a much more complex task—first because of different new concepts such as
Micro-Partitioning®, Virtual Processors and Entitled Capacity, and second because the
inherent complexity of parallel processing on SMT.

Current technologies, for instance, allow a logical partition to go in a few seconds from a
single idle logical processor to sixteen fully allocated processes to fulfill a workload demand,
triggering several components on hypervisor and hardware levels and in less than a minute,
go back to its stationary state.

The POWER7 technology brought important improvements of how processor utilization
values are reported, offering more accurate data to systems administrators.

Tip: The netperf tool can be obtained at:

http://www.netperf.org
226 IBM Power Systems Performance Guide: Implementing and Optimizing

This section focuses on explaining some of the concepts involved in reading the processor
utilization values on POWER7 environments and will go through a few well-known
commands, explaining some important parameters and how to read them.

5.4.2 POWER7 processor utilization reporting

POWER7 introduces an improved algorithm to report processor utilization. This algorithm is
based on calibrated Processor Utilization Resource Register (PURR) compared to PURR that
is used for POWER5 and POWER6. The aim of this new algorithm is to provide a better view
of how much capacity is used, and how much capacity is still available. Thus you can achieve
linear PURR utilization and throughput (TPS) relationships. Clients would benefit from the
new algorithm, which emphasizes more on PURR utilization metrics than other targets such
as throughput and response time.

Figure 5-3 explains the difference between the POWER5, POWER6, and POWER7 PURR
utilization algorithms. On POWER5 and POWER6 systems, when only one of the two SMT
hardware threads is busy, the utilization of the processor core is reported 100%. While on
POWER7, the utilization of the SMT2 processor core is around 80% in the same situation.
Furthermore, when one of the SMT4 hardware thread is busy, the utilization of the SMT4
processor core is around 63%. Also note that the POWER7 utilization algorithm persists even
if running in POWER6 mode.

Figure 5-3 POWER7 processor utilization reporting

Note: The utilization reporting variance (87~94%) when two threads are busy in SMT4 is
due to occasional load balancing to tertiary threads (T2/T3), which is controlled by a
number of schedo options including tertiary_barrier_load.

The concept of the new improved PURR algorithm is not related to Scaled Process
Utilization of Resource Register (SPURR). The latter is a conceptually different technology
and is covered in 5.4.5, “Processor utilization reporting in power saving modes” on
page 234.

busy

idle

Power5/6 SMT2

T0

T1

100%
busy

busy

idle

Power7 SMT2

T0

T1

80%
busy

busy

idle

Power7 SMT4

T0

T1

62~63%
busy

idle
T2

idleT3

busy

Power7 SMT1

T0 100%
busy

busy

Power7 SMT4

T0

T1

87~94%
busy

idle
T2

idle
T3

busy

Power7 SMT4

T0

T1

88%
busy

T2

idle
T3

busy busy

busy

busy

idle

Power7 SMT2
In Power6/Power6+ Mode

T0

T1

67-80%
busy

busy

idle

Power5/6 SMT2

T0

T1

100%
busy

busy

idle

Power7 SMT2

T0

T1

80%
busy

busy

idle

Power7 SMT4

T0

T1

62~63%
busy

idle
T2

idleT3

busy

Power7 SMT1

T0 100%
busy

busy

Power7 SMT4

T0

T1

87~94%
busy

idle
T2

idle
T3

busy

Power7 SMT4

T0

T1

88%
busy

T2

idle
T3

busy busy

busy

busy

idle

Power7 SMT2
In Power6/Power6+ Mode

T0

T1

67-80%
busy
Chapter 5. Testing the environment 227

POWER7 processor utilization example - dedicated LPAR
Example 5-19 demonstrates processor utilization when one hardware thread is busy in SMT4
mode. As in the example, the single thread application consumed an entire logical processor
(CPU0), but not the entire capacity of the physical core, because there were still three idle
hardware threads in the physical core. The physical consumed processor is about 0.62.
Because there are two physical processors in the system, the overall processor utilization is
31%.

Example 5-19 Processor utilization in SMT4 mode on a dedicated LPAR

#sar -P ALL 1 100
AIX p750s1aix2 1 7 00F660114C00 10/02/12
System configuration: lcpu=8 mode=Capped
18:46:06 0 100 0 0 0 0.62
 1 0 0 0 100 0.13
 2 0 0 0 100 0.13
 3 0 0 0 100 0.13
 4 1 1 0 98 0.25
 5 0 0 0 100 0.25
 6 0 0 0 100 0.25
 7 0 0 0 100 0.25
 - 31 0 0 69 1.99

Example 5-20 demonstrates processor utilization when one thread is busy in SMT2 mode. In
this case, the single thread application consumed more capacity of the physical core (0.80),
because there was only one idle hardware thread in the physical core, compared to three idle
hardware threads in SMT4 mode in Example 5-19. The overall processor utilization is 40%
because there are two physical processors.

Example 5-20 Processor utilization in SMT2 mode on a dedicated LPAR

#sar -P ALL 1 100
AIX p750s1aix2 1 7 00F660114C00 10/02/12

System configuration: lcpu=4 mode=Capped

18:47:00 cpu %usr %sys %wio %idle physc
18:47:01 0 100 0 0 0 0.80
 1 0 0 0 100 0.20
 4 0 1 0 99 0.50
 5 0 0 0 100 0.49
 - 40 0 0 60 1.99

Example 5-21 demonstrates processor utilization when one thread is busy in SMT1 mode.
Now the single thread application consumed the whole capacity of the physical core, because
there is no other idle hardware thread in ST mode. The overall processor utilization is 50%
because there are two physical processors.

Example 5-21 Processor utilization in SMT1 mode on a dedicated LPAR

sar -P ALL 1 100

AIX p750s1aix2 1 7 00F660114C00 10/02/12
System configuration: lcpu=2 mode=Capped
18:47:43 cpu %usr %sys %wio %idle
18:47:44 0 100 0 0 0
228 IBM Power Systems Performance Guide: Implementing and Optimizing

 4 0 0 0 100
 - 50 0 0 50

POWER7 processor utilization example - shared LPAR
Example 5-22 demonstrates processor utilization when one thread is busy in SMT4 mode on
a shared LPAR. As in the example, logical processor 4/5/6/7 consumed one physical
processor core. Although logical processor 4 is 100% busy, the physical consumed
processor (physc) is only 0.63. Which means the LPAR received a whole physical core, but is
not fully driven by the single thread application. The overall system processor utilization is
about 63%. For details aout system processor utilization reporting in a shared LPAR
environment, refer to 5.4.6, “A common pitfall of shared LPAR processor utilization” on
page 236.

Example 5-22 Processor utilization in SMT4 mode on a shared LPAR

#sar -P ALL 1 100
AIX p750s1aix2 1 7 00F660114C00 10/02/12
System configuration: lcpu=16 ent=1.00 mode=Uncapped
18:32:58 cpu %usr %sys %wio %idle physc %entc
18:32:59 0 24 61 0 15 0.01 0.8
 1 0 3 0 97 0.00 0.2
 2 0 2 0 98 0.00 0.2
 3 0 2 0 98 0.00 0.3
 4 100 0 0 0 0.63 62.6
 5 0 0 0 100 0.12 12.4
 6 0 0 0 100 0.12 12.4
 7 0 0 0 100 0.12 12.4
 8 0 52 0 48 0.00 0.0
 12 0 57 0 43 0.00 0.0
 - 62 1 0 38 1.01 101.5

Example 5-23 demonstrates processor utilization when one thread is busy in SMT2 mode on
a shared LPAR. Logical processor 4/5 consumed one physical processor core. Although
logical processor 4 is 100% busy, the physical consumed processor is only 0.80, which
means the physical core is still not fully driven by the single thread application.

Example 5-23 Processor utilization in SMT2 mode on a shared LPAR

#sar -P ALL 1 100
AIX p750s1aix2 1 7 00F660114C00 10/02/12
System configuration: lcpu=8 ent=1.00 mode=Uncapped
18:35:13 cpu %usr %sys %wio %idle physc %entc
18:35:14 0 20 62 0 18 0.01 1.2
 1 0 2 0 98 0.00 0.5
 4 100 0 0 0 0.80 80.0
 5 0 0 0 100 0.20 19.9
 8 0 29 0 71 0.00 0.0
 9 0 7 0 93 0.00 0.0
 12 0 52 0 48 0.00 0.0
 13 0 0 0 100 0.00 0.0
 - 79 1 0 20 1.02 101.6

Example 5-24 on page 230 demonstrates processor utilization when one thread is busy in
SMT1 mode on a shared LPAR. Logical processor 4 is 100% busy, and fully consumed one
physical processor core. That is because there is only one hardware thread for each core,
and thus there is no idle hardware thread available.
Chapter 5. Testing the environment 229

Example 5-24 Processor utilization in SMT1 mode on a shared LPAR

#sar -P ALL 1 100
AIX p750s1aix2 1 7 00F660114C00 10/02/12
System configuration: lcpu=4 ent=1.00 mode=Uncapped
18:36:10 cpu %usr %sys %wio %idle physc %entc
18:36:11 0 12 73 0 15 0.02 1.6
 4 100 0 0 0 1.00 99.9
 8 26 53 0 20 0.00 0.2
 12 0 50 0 50 0.00 0.1
 - 98 1 0 0 1.02 101.7

5.4.3 Small workload example

To illustrate some of the various types of information, we created a simplistic example by
putting a tiny workload on a free partition. The system is running a process called cputest that
puts a very small workload, as shown in Figure 5-4.

Figure 5-4 single process - Topas simplified processor statistics

In the processor statistics, the graphic shows a total of 3.2% of utilization at the User%
column. In the process table you can see that the cputest is consuming 3.2% of the processor
on the machine as well, which seems accurate according to our previous read.

Note: The ratio is acquired using the ncpu tool. The result might vary slightly under
different workloads.

Note: The information displayed in the processor statistics is not intended to match any
specific processes. The fact that it matches the utilization of cputest is just because the
system does not have any other workload.
230 IBM Power Systems Performance Guide: Implementing and Optimizing

There are a few important details shown in Figure 5-4 on page 230:

� Columns User%, Kern%, and Wait%

The column User% refers to the percentage of processor time spent running user-space
processes. The Kern% refers to the time spent by the processor in kernel mode, and
Wait% is the time spent by the processor waiting for some blocking event, like an I/O
operation. This indicator is mostly used to identify storage subsystem problems.

These three values together form your system utilization. Which one is larger or smaller
will depend on the type of workload running on the system.

� Column Idle%

Idle is the percent of time that the processor spends doing nothing. In production
environments, having long periods of Idle% may indicate that the system is oversized and
that it is not using all its resources. On the other hand, a system near to 0% idle all the
time can be an alert that your system is undersized.

There are no rules of thumb when defining what is a desired idle state. While some prefer
to use as much of the system resources as possible, others prefer to have a lower
resource utilization. It all depends on the users’ requirements.

For sizing purposes, the idle time is only meaningful when measured for long periods.

� Column Physc

This is the quantity of physical processors currently consumed. Figure 5-4 on page 230
shows Physc at 0.06 or 6% of physical processor utilization.

� Column Entc%

This is the percentage of the entitled capacity consumed. This field should always be
analyzed when dealing with processor utilization because it gives a good idea about the
sizing of the partition.

A partition that shows the Entc% always too low or always too high (beyond the 100%) is an
indication that its sizing must be reviewed. This topic is discussed in 3.1, “Optimal logical
partition (LPAR) sizing” on page 42.

Figure 5-5 on page 232 shows detailed statistics for the processor. Notice that the reported
values this time are a bit different.

Note: Predictable workload increases are easier to manage than unpredictable
situations. For the first, a well-sized environment is usually fine while for the latter, some
spare resources are usually the best idea.
Chapter 5. Testing the environment 231

Figure 5-5 Single process - Topas detailed processor statistics

Notice that topas reports CPU0 running at 90.9% in the User% column and only 2.4% in the
Idle% column. Also, the Physc values are now spread across CPU0 (0.04), CPU2 (0.01), and
CPU3 (0.01), but the sum of the three logical processors still matches the values of the
simplified view.

In these examples, it is safe to say that cputest is consuming only 3.2% of the total entitled
capacity of the machine.

In an SMT-enabled partition, the SMT distribution over the available cores can also be
checked with the mpstat -s command, as shown in Figure 5-6.

Figure 5-6 mpstat -s reporting a small load on cpu0 and using 5.55% of our entitled capacity
232 IBM Power Systems Performance Guide: Implementing and Optimizing

The mpstat -s command gives information about the physical processors (Proc0, Proc4,
Proc8, and Proc12) and each of the logical processors (cpu0 through cpu15). Figure 5-6 on
page 232 shows five different readings of our system processor while cputest was running.

5.4.4 Heavy workload example

With the basic processor utilization concepts illustrated, we now take a look at a heavier
workload and see how the processor reports changed.

The next examples provide reports of an eight-processes workload with intensive processors.

In Figure 5-7 User% is now reporting almost 90% of processor utilization, but that information
itself does not tell much. Physc and Entc% are now reporting much higher values, indicating
that the partition is using more of its entitled capacity.

Figure 5-7 Topas simplified processor statistics - Eight simultaneous processes running

Looking at the detailed processor statistics (Figure 5-8), you can see that the physical
processor utilization is still spread across the logical processors of the system, and the sum
would approximately match the value seen in the simplified view in Figure 5-7.

Figure 5-8 Topas detailed processor statistics - Eight simultaneous processes running

Notes:

� The default behavior of mpstat is to present the results in 80 columns, thus wrapping
the lines if you have a lot of processors. The flag -w can be used to display wide lines.

� The additional sections provide some information about SMT systems, focusing on the
recent POWER7 SMT4 improvements.
Chapter 5. Testing the environment 233

The thread distribution can be seen in Figure 5-9. This partition is an SMT4 partition, and
therefore the system tries to distribute the processes as best as possible over the logical
processors.

Figure 5-9 mpstat threads view - Eight simultaneous processes running

For the sake of curiosity, Figure 5-10 shows a load of nine processes distributed across only
three virtual processors. The interesting detail in this figure is that it illustrates the efforts of
the system to make the best use of the SMT4 design by allocating all logical processors of
Proc0, Proc4 and Proc2 while Proc6 is almost entirely free.

Figure 5-10 mpstat threads view - Nine simultaneous processes running

5.4.5 Processor utilization reporting in power saving modes

This section shows processor utilization reporting in power saving mode.

Concepts
Before POWER5, AIX calculated processor utilization based on decrementer sampling which
is active every tick (10ms). The tick is charged to user/sys/idle/wait buckets, depending on
the execution mode when the clock interrupt happens. It is a pure software approach based
on the operating system, and not suitable when shared LPAR and SMT are introduced since
the physical core is no longer dedicated to one hardware thread.

Since POWER5, IBM introduced Processor Utilization Resource Registers (PURR) for
processor utilization accounting. Each processor has one PURR for each hardware thread,
and the PURR is counted by hypervisor in fine-grained time slices at nanosecond magnitude.
Thus it is more accurate than decrementer sampling, and successfully addresses the
utilization reporting issue in SMT and shared LPAR environments.

Since POWER6, IBM introduced power saving features, that is, the processor frequency
might vary according to different power saving policies. For example, in static power saving
mode, the processor frequency will be at a fixed value lower than nominal; in dynamic power
saving mode, the processor frequency can vary dynamically according to the workload, and
can reach a value larger than nominal (over-clocking).

Because PURR increments independent of processor frequency, each PURR tick does not
necessarily represent the same capacity if you set a specific power saving policy other than
234 IBM Power Systems Performance Guide: Implementing and Optimizing

the default. To address this problem, POWER6 and later chips introduced the Scaled PURR,
which is always proportional to process frequency. When running at lower frequency, the
SPURR ticks less than PURR, and when running at higher frequency, the SPURR ticks more
than PURR. We can also use SPURR together with PURR to calculate the real operating
frequency, as in the equation:

operating frequency = (SPURR/PURR) * nominal frequency

There are several monitoring tools based on SPURR, which can be used to get an accurate
utilization of LPARs when in power saving mode. We introduce these tools in the following
sections.

Monitor tools
Example 5-25 shows an approach to observe the current power saving policy. You can see
that LPAR A is in static power saving mode while LPAR B is in dynamic power saving (favoring
performance) mode.

Example 5-25 lparstat -i to observe the power saving policy of an LPAR

LPAR A:
#lparstat -i
…
Power Saving Mode : Static Power Saving

LPAR B:
#lparstat –i
…
Power Saving Mode : Dynamic Power Savings (Favor
Performance)

Example 5-26 shows how the processor operating frequency is shown in the lparstat output.
There is an extra %nsp column indicating the current ratio compared to nominal processor
speed, if the processor is not running at the nominal frequency.

Example 5-26 %nsp in lparstat

#lparstat 1
System configuration: type=Dedicated mode=Capped smt=4 lcpu=32 mem=32768MB

%user %sys %wait %idle %nsp
----- ----- ------ ------ -----
 76.7 14.5 5.6 3.1 69
 80.0 13.5 4.4 2.1 69
 76.7 14.3 5.8 3.2 69
 65.2 14.5 13.2 7.1 69
 62.6 15.1 14.1 8.1 69
 64.0 14.1 13.9 8.0 69
 65.0 15.2 12.6 7.2 69

Note: If %nsp takes a fixed value lower than 100%, it usually means you have enabled
static power saving mode. This might not be what you want, because static power saving
mode cannot fully utilize the processor resources despite the workload.

%nsp can also be larger than 100 if the processor is over-clocking in dynamic power
saving modes.
Chapter 5. Testing the environment 235

Example 5-27 shows another lparstat option, -E, for observing the real processor utilization
ratio in various power saving modes. As in the output, the actual metrics are based on PURR,
while the normalized metrics are based on SPURR. The normalized metrics represent what
the real capacity would be if all processors were running at nominal frequency. The sum of
user/sys/wait/idle in normalized metrics can exceed the real capacity in case of over-clocking.

Example 5-27 lparstat -E

#lparstat -E 1 100

System configuration: type=Dedicated mode=Capped smt=4 lcpu=64 mem=65536MB
Power=Dynamic-Performance

Physical Processor Utilisation:

 --------Actual-------- ------Normalised------
 user sys wait idle freq user sys wait idle
 ---- ---- ---- ---- --------- ---- ---- ---- ----
15.99 0.013 0.000 0.000 3.9GHz[102%] 16.24 0.014 0.000 0.000
15.99 0.013 0.000 0.000 3.9GHz[102%] 16.24 0.013 0.000 0.000
15.99 0.009 0.000 0.000 3.9GHz[102%] 16.24 0.009 0.000 0.000

Refer to IBM EnergyScale for POWER7 Processor-Based Systems at:
http://public.dhe.ibm.com/common/ssi/ecm/en/pow03039usen/POW03039USEN.PDF

5.4.6 A common pitfall of shared LPAR processor utilization

For dedicated LPAR, the processor utilization reporting uses the same approach as in no
virtualization environment. However, the situation is more complicated in shared LPAR
situations. For shared LPAR, if the consumed processor is less than entitlement, the system
processor utilization ratio uses the processor entitlement as the base.

As in Example 5-28, %user, %sys, %wait, and %idle are calculated based on the entitled
processor, which is 1.00. Thus, 54% user percentage actually means that 0.54 physical
processor is consumed in user mode, not 0.54 * 0.86 (physc).

Example 5-28 Processor utilization reporting when consumed processors is less than entitlement

#lparstat 5 3
System configuration: type=Shared mode=Uncapped smt=4 lcpu=16 mem=8192MB psize=16
ent=1.00
%user %sys %wait %idle physc %entc lbusy vcsw phint
----- ----- ------ ------ ----- ----- ------ ----- -----
 54.1 0.4 0.0 45.5 0.86 86.0 7.3 338 0
 54.0 0.3 0.0 45.7 0.86 85.7 6.8 311 0
 54.0 0.3 0.0 45.7 0.86 85.6 7.2 295 0

If the consumed processor is larger than entitlement, the system processor utilization ratio
uses the consumed processor as the base. Refer to Example 5-29 on page 237. In this case,
%usr, %sys, %wait, and %idle are calculated based on the consumed processor. Thus
62.2% user percentage actually means that 2.01*0.622 processor is consumed in user
mode.

Note: AIX introduces lparstat options -E and -Ew since AIX 5.3 TL9, AIX 6.1 TL2, and AIX
7.1
236 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 5-29 Processor utilization reporting when consumed processors exceeds entitlement

#lparstat 5 3
System configuration: type=Shared mode=Uncapped smt=4 lcpu=16 mem=8192MB psize=16
ent=1.00
%user %sys %wait %idle physc %entc lbusy vcsw phint
----- ----- ------ ------ ----- ----- ------ ----- -----
 62.3 0.2 0.0 37.6 2.00 200.3 13.5 430 0
 62.2 0.2 0.0 37.6 2.01 200.8 12.7 569 0
 62.2 0.2 0.0 37.7 2.01 200.7 13.4 550 0

5.5 Memory utilization

This section covers a suggested approach of looking at memory usage, how to read the
metrics correctly and how to understand paging space utilization. It shows how to monitor
memory in partitions with dedicated memory, active memory sharing, and active memory
expansion. It also presents some information about memory leaks and memory size
simulation.

5.5.1 How much memory is free (dedicated memory partitions)

In AIX, memory requests are managed by the Virtual Memory Manager (VMM). Virtual
memory includes real physical memory (RAM) and memory stored on disk (paging space).

Virtual memory segments are partitioned into fixed-size units called pages. AIX supports four
page sizes: 4 KB, 64 KB, 16 MB and 16 GB. The default page size is 4 KB. When free
memory becomes low, VMM uses the Last Recently Used (LRU) algorithm to replace less
frequently referenced memory pages to paging space. To optimize which pages are
candidates for replacement, AIX classifies them into two types:

� Computational memory
� Non-computational memory

Computational memory, also known as computational pages, consists of the pages that
belong to working-storage segments or program text (executable files) segments.
Non-computational memory or file memory is usually pages from permanent data files in
persistent storage.

AIX tends to use all of the physical memory available. Depending on how you look at your
memory utilization, you may think you need more memory.

In Example 5-30, the fre column shows 8049 pages of 4 KB of free memory = 31 MB and the
LPAR has 8192 MB. Apparently, the system has almost no free memory.

Example 5-30 vmstat shows there is almost no free memory

vmstat

System configuration: lcpu=16 mem=8192MB ent=1.00

Note: The rule above applies to overall system processor utilization reporting. The specific
logical processor utilization ratios in sar -P ALL and mpstat -a are always based on their
physical consumed processors. However, the overall processor utilization reporting in
these tools still complies with the rule.
Chapter 5. Testing the environment 237

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec
 1 1 399550 8049 0 0 0 434 468 0 68 3487 412 0 0 99 0 0.00 0.0

Using the command dd if=/dev/zero of=/tmp/bigfile bs=1M count=8192, we generated a
file of the size of our RAM memory (8192 MB). The output of vmstat in Example 5-31
presents 6867 frames of 4 k free memory = 26 MB.

Example 5-31 vmstat still shows almost no free memory

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec
 1 1 399538 6867 0 0 0 475 503 0 60 2484 386 0 0 99 0 0.000 0.0

Looking at the memory report of topas, Example 5-32, you see that the non-computational
memory, represented by Noncomp, is 80%.

Example 5-32 Topas shows non-computational memory at 80%

Topas Monitor for host:p750s2aix4 EVENTS/QUEUES FILE/TTY
Thu Oct 11 18:46:27 2012 Interval:2 Cswitch 271 Readch 3288
 Syscall 229 Writech 380
CPU User% Kern% Wait% Idle% Physc Entc% Reads 38 Rawin 0
Total 0.1 0.3 0.0 99.6 0.01 0.88 Writes 0 Ttyout 178
 Forks 0 Igets 0
Network BPS I-Pkts O-Pkts B-In B-Out Execs 0 Namei 23
Total 1.01K 9.00 2.00 705.0 330.0 Runqueue 0.50 Dirblk 0
 Waitqueue 0.0
Disk Busy% BPS TPS B-Read B-Writ MEMORY
Total 0.0 0 0 0 0 PAGING Real,MB 8192
 Faults 0 % Comp 19
FileSystem BPS TPS B-Read B-Writ Steals 0 % Noncomp 80
Total 3.21K 38.50 3.21K 0 PgspIn 0 % Client 80
 PgspOut 0
Name PID CPU% PgSp Owner PageIn 0 PAGING SPACE
topas 5701752 0.1 2.48M root PageOut 0 Size,MB 2560
java 4456586 0.1 20.7M root Sios 0 % Used 0
getty 5308512 0.0 640K root % Free 100
gil 2162754 0.0 960K root NFS (calls/sec)
slp_srvr 4915352 0.0 472K root SerV2 0 WPAR Activ 0
java 7536870 0.0 55.7M pconsole CliV2 0 WPAR Total 1
pcmsrv 8323232 0.0 1.16M root SerV3 0 Press: "h"-help
java 6095020 0.0 64.8M root CliV3 0 "q"-quit

After using the command rm /tmp/bigfile, we saw that the vmstat output, shown in
Example 5-33, shows 1690510 frames of 4 k free memory = 6603 MB.

Example 5-33 vmstat shows a lot of free memory

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------------------
r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec
238 IBM Power Systems Performance Guide: Implementing and Optimizing

1 1 401118 1690510 0 0 0 263 279 0 35 1606 329 0 0 99 0 0.000 0.0

What happened with the memory after we issued the rm command? Remember
non-computational memory? It is basically file system cache. Our dd filled the
non-computational memory and rm wipes that cache from noncomp memory.

AIX VMM keeps a free list—real memory pages that are available to be allocated. When
process requests memory and there are not sufficient pages in the free list, AIX first removes
pages from non-computational memory.

Many monitoring tools present the utilized memory without discounting non-computational
memory. This leads to potential misunderstanding of statistics and incorrect assumptions
about how much of memory is actually free. In most cases it should be possible to make
adjustments to give the right value.

In order to know the utilized memory, the correct column to look at, when using vmstat, is
active virtual memory (avm). This value is also presented in 4 KB pages. In Example 5-30 on
page 237, while the fre column of vmstat shows 8049 frames (31 MB), the avm is 399,550
pages (1560 MB). For 1560 MB used out of 8192 MB of the total memory of the LPAR, there
are 6632 MB free. The avm value can be greater than the physical memory, because some
pages might be in RAM and others in paging space. If that happens, it is an indication that
your workload requires more than the physical memory available.

Let us play more with dd and this time analyze memory with topas. In Example 5-34, topas
output shows 1% utilization of Noncomp (non-computational) memory.

Using the dd command again:

dd if=/dev/zero of=/tmp/bigfile bs=1M count=8192

The topas output in Example 5-34 shows that the sum of computational and
non-computational memory is 99%, so almost no memory is free. What will happen if you
start a program that requests memory? To illustrate this, in Example 5-35, we used the
stress tool from:

http://www.perzl.org/aix/index.php?n=Mains.Stress

Example 5-34 Topas shows Comp + Noncomp = 99% (parts stripped for better reading)

Disk Busy% BPS TPS B-Read B-Writ MEMORY
Total 0.0 0 0 0 0 PAGING Real,MB 8192
 Faults 78 % Comp 23
FileSystem BPS TPS B-Read B-Writ Steals 0 % Noncomp 76
Total 2.43K 28.50 2.43K 0 PgspIn 0 % Client 76

Example 5-35 Starting a program that requires 1024 MB of memory

stress --vm 1 --vm-bytes 1024M --vm-hang 0
stress: info: [11600010] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd

In Example 5-36, non-computational memory dropped from 76% (Example 5-34) to 63% and
the computational memory increased from 23% to 35%.

Example 5-36 Topas output while running a stress program

Disk Busy% BPS TPS B-Read B-Writ MEMORY
Total 0.0 0 0 0 0 PAGING Real,MB 8192
 Faults 473 % Comp 35
Chapter 5. Testing the environment 239

http://www.perzl.org/aix/index.php?n=Mains.Stress

FileSystem BPS TPS B-Read B-Writ Steals 0 % Noncomp 63

After cancelling the stress program, Example 5-37 shows that non-computational memory
remains at the same value and the computational returned to the previous mark. This shows
that when a program requests computational memory, VMM allocates this memory as
computational and releases pages from non-computational.

Example 5-37 Topas after cancelling the program

Disk Busy% BPS TPS B-Read B-Writ MEMORY
Total 0.0 0 0 0 0 PAGING Real,MB 8192
 Faults 476 % Comp 23
FileSystem BPS TPS B-Read B-Writ Steals 0 % Noncomp 63

Using nmon, in Example 5-38, the sum of the values Process and System is approximately the
value of Comp. Process is memory utilized by the application process and System is memory
utilized by the AIX kernel.

Example 5-38 Using nmon to analyze memory

??topas_nmon??b=Black&White??????Host=p750s2aix4?????Refresh=2 secs???18:49.27??
? Memory ???
? Physical PageSpace | pages/sec In Out | FileSystemCache?
?% Used 89.4% 2.4% | to Paging Space 0.0 0.0 | (numperm) 64.5%?
?% Free 10.6% 97.6% | to File System 0.0 0.0 | Process 15.7%?
?MB Used 7325.5MB 12.1MB | Page Scans 0.0 | System 9.2%?
?MB Free 866.5MB 499.9MB | Page Cycles 0.0 | Free 10.6%?
?Total(MB) 8192.0MB 512.0MB | Page Steals 0.0 | -----?
? | Page Faults 0.0 | Total 100.0%?
?-- | numclient 64.5%?
?Min/Maxperm 229MB(3%) 6858MB(90%) <--% of RAM | maxclient 90.0%?
?Min/Maxfree 960 1088 Total Virtual 8.5GB | User 73.7%?
?Min/Maxpgahead 2 8 Accessed Virtual 2.0GB 23.2%| Pinned 16.2%?
? | lruable pages ?
??

svmon
Another useful tool to see how much memory is free is svmon. Since AIX 5.3 TL9 and AIX 6.1
TL2, svmon has a new metric called available memory, representing the free memory.
Example 5-39 shows svmon output. The available memory is 5.77 GB.

Example 5-39 svmon output shows available memory

svmon -O summary=basic,unit=auto
Unit: auto
--
 size inuse free pin virtual available mmode
memory 8.00G 7.15G 873.36M 1.29G 1.97G 5.77G Ded
pg space 512.00M 12.0M

 work pers clnt other
pin 796.61M 0K 0K 529.31M
in use 1.96G 0K 5.18G

One svmon usage is to show the top 10 processes in memory utilization, shown in
Example 5-40 on page 241.
240 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 5-40 svmon - top 10 memory consuming processes

svmon -Pt10 -O unit=KB
Unit: KB

 Pid Command Inuse Pin Pgsp Virtual
 5898490 java 222856 40080 0 194168
 7536820 java 214432 40180 0 179176
 6947038 cimserver 130012 39964 0 129940
 8126526 cimprovagt 112808 39836 0 112704
 8519700 cimlistener 109496 39836 0 109424
 6488292 rmcd 107540 39852 0 106876
 4063360 tier1slp 106912 39824 0 106876
 5636278 rpc.statd 102948 39836 0 102872
 6815958 topasrec 102696 39824 0 100856
 6357198 IBM.DRMd 102152 39912 0 102004

Example 5-41 illustrates the svmon command showing only java processes.

Example 5-41 svmon showing only Java processes

svmon -C java -O unit=KB,process=on
Unit: KB
===
Command Inuse Pin Pgsp Virtual
java 236568 39376 106200 312868

 Pid Command Inuse Pin Pgsp Virtual
 7274720 java 191728 38864 9124 200836
 6553820 java 38712 372 74956 88852
 4915426 java 6128 140 22120 23180

For additional information, refer to:

aix4admins.blogspot.com/2011/09/vmm-concepts-virtual-memory-segments.html

or

www.ibm.com/developerworks/aix/library/au-vmm/

Example 5-42 Output of the vmstat - v command

vmstat -v
 2097152 memory pages
 1950736 lruable pages
 223445 free pages
 2 memory pools
 339861 pinned pages
 90.0 maxpin percentage
 3.0 minperm percentage
 90.0 maxperm percentage
 69.3 numperm percentage
 1352456 file pages
 0.0 compressed percentage
 0 compressed pages
 69.3 numclient percentage
Chapter 5. Testing the environment 241

 90.0 maxclient percentage
 1352456 client pages
 0 remote pageouts scheduled
 0 pending disk I/Os blocked with no pbuf
 191413 paging space I/Os blocked with no psbuf
 2228 filesystem I/Os blocked with no fsbuf
 0 client filesystem I/Os blocked with no fsbuf
 2208 external pager filesystem I/Os blocked with no fsbuf
 24.9 percentage of memory used for computational pages

The vmstat command in Example 5-42 on page 241 shows: 1352456 client pages -
non-computational, 1359411 - 1352456 = 6955.

Example 5-43 Output of the svmon command

svmon -O summary=basic
Unit: page
--
 size inuse free pin virtual available mmode
memory 2097152 1873794 223358 339861 515260 1513453 Ded
pg space 131072 3067

 work pers clnt other
pin 204357 0 0 135504
in use 514383 0 1359411

The output of the svmon command in Example 5-43 shows: 1359411 client pages. Some of
them are computational and the rest are non-computational.

5.5.2 Active memory sharing partition monitoring

This section shows how to monitor the memory in shared memory partitions. It can be done
with the vmstat, lparstat, topas commands, and so on, and these commands with the -h
option show hypervisor paging information.

The operating system sees a logical entity that is not always backed up with physical memory.

When using the vmstat command with the -h option, the hypervisor paging information will be
displayed as shown in Example 5-44.

Example 5-44 vmstat with hypervisor

vmstat -h 5 3

System configuration: lcpu=16 mem=8192MB ent=1.00 mmode=shared mpsz=8.00GB

kthr memory page faults cpu hypv-page
----- ----------- ------------------------ ------------ ----------------------- -------------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan
 0 0 399386 1666515 0 0 0 0 0 0 3 124 120 0 0 99 0 0.00 0.4 0 0 8.00 0.00

In this case, It also shows the number of 4 KB pages in avm, fri and page columns
It shows 6G or more of free space (ie. 1666515 * 4k pages)

The fields highlighted in bold in Example 5-44 have been added for active memory sharing:

mmode Shows shared if the partition is running in shared memory mode. This field was
not displayed on dedicated memory partitions.
242 IBM Power Systems Performance Guide: Implementing and Optimizing

mpsz Shows the size of the shared memory pool.

hpi Shows the number of hypervisor page-ins for the partition. A hypervisor page-in
occurs if a page is being referenced that is not available in real memory because
it has been paged out by the hypervisor previously. If no interval is specified when
issuing the vmstat command, the value shown is counted from boot time.

hpit Shows the average time spent in milliseconds per hypervisor page-in. If no
interval is specified when issuing the vmstat command, the value shown is
counted from boot time.

pmem Shows the amount of physical memory backing the logical memory, in gigabytes.

loan Shows the amount of the logical memory in gigabytes that is loaned to the
hypervisor. The amount of loaned memory can be influenced through the vmo
ams_loan_policy tunable.

If the consumed memory is larger than the desired memory, the system utilization avm ratio is
over desired memory capacity, as shown in Example 5-45.

Example 5-45 In case of larger than desired memory consumption (vmstat with hypervisor)

vmstat -h 5 3

System configuration: lcpu=16 mem=8192MB ent=1.00 mmode=shared mpsz=8.00GB

kthr memory page faults cpu hypv-page
----- ----------- ------------------------ ------------ ----------------------------- -------------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan
 7 3 1657065 3840 0 0 0 115709 115712 0 3 16 622057 45 24 15 17 3.75 374.9 0 0 8.00 0.00
 7 3 2192911 4226 0 7 16747 102883 153553 0 1665 10 482975 41 26 18 15 3.19 318.6 0 0 8.00 0.00
 5 6 2501329 5954 0 48 54002 53855 99595 0 6166 11 36778 25 43 25 6 1.12 112.2 0 0 8.00 0.00

If loaning is enabled (ams_loan_policy is set to 1 or 2 in vmo), AIX loans pages when the
hypervisor initiates a request. AIX removes free pages that are loaned to the hypervisor from
the free list.

Example 5-44 on page 242 shows a partition that has a logical memory size of 8 GB. It has
also assigned 8 GB of physical memory. Of this assigned 8 GB of physical memory, 6.3 GB
(1666515 4 k pages) are free because there is no activity in the partition.

Example 5-46 shows the same partition a few minutes later. In the meantime, the hypervisor
requested memory and the partition loaned 3.2 GB to the hypervisor. AIX has removed the
free pages that it loaned from the free list.

The free list has therefore been reduced by 833215 4 KB pages, as shown in Example 5-46.

Example 5-46 vmstat command

vmstat -h 5 3

System configuration: lcpu=16 mem=8192MB ent=1.00 mmode=shared mpsz=8.00GB

kthr memory page faults cpu hypv-page
----- ----------- ------------------------ ------------ ----------------------- -------------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec hpi hpit pmem loan
 0 0 399386 833215 0 0 0 0 0 0 3 124 120 0 0 99 0 0.00 0.4 0 0 4.76 3.24
Chapter 5. Testing the environment 243

AIX paging and hypervisor paging
When using active memory sharing, paging can occur on the AIX level or on the hypervisor
level. When you see non-zero values in the pi or po column of the vmstat command, it means
that AIX is performing paging activities.

In a shared memory partition, AIX paging occurs not only when the working set exceeds the
size of the logical memory, as in a dedicated partition. This can happen even if the LPAR has
less physical memory than logical memory. AIX is dependent on the amount of logical
memory available.

Another reason is that AIX is freeing memory pages to loan them to the hypervisor. If the
loaned pages are used pages, AIX has to save the content to its paging space before loaning
them to the hypervisor.

This behavior will especially occur if you have selected an aggressive loaning policy
(ams_loan_policy=2).

5.5.3 Active memory expansion partition monitoring

In 3.2, “Active Memory Expansion” on page 48, the concepts of active memory expansion
(AME) were introduced. Now, a few examples of how to monitor AME behavior are shown.

Monitoring of AME can be done with the special tools amepat, topas -L.

The amepat command
The amepat command provides a summary of the active memory expansion configuration,
and can be used for monitoring and fine-tuning the configuration.

The amepat command shows the current configuration and statistics of the system resource
utilization over the monitoring period. It can be run for periods of time to collect metrics while
a workload is running, as shown in Example 5-47.

Example 5-47 amepat with little memory consumption

amepat 1 5

Command Invoked : amepat 1 5

Date/Time of invocation : Wed Oct 10 10:33:13 CDT 2012
Total Monitored time : 5 mins 6 secs
Total Samples Collected : 5

System Configuration:

Partition Name : p750s1aix4
Processor Implementation Mode : POWER7 Mode
Number Of Logical CPUs : 16
Processor Entitled Capacity : 1.00
Processor Max. Capacity : 4.00
True Memory : 8.00 GB
SMT Threads : 4
Shared Processor Mode : Enabled-Uncapped
Active Memory Sharing : Disabled
Active Memory Expansion : Disabled

System Resource Statistics: Average Min Max
244 IBM Power Systems Performance Guide: Implementing and Optimizing

--------------------------- ----------- ----------- -----------
CPU Util (Phys. Processors) 0.00 [0%] 0.00 [0%] 0.00 [0%]
Virtual Memory Size (MB) 1564 [19%] 1564 [19%] 1564 [19%]
True Memory In-Use (MB) 1513 [18%] 1513 [18%] 1514 [18%]
Pinned Memory (MB) 1443 [18%] 1443 [18%] 1443 [18%]
File Cache Size (MB) 19 [0%] 19 [0%] 19 [0%]
Available Memory (MB) 6662 [81%] 6662 [81%] 6663 [81%]

Active Memory Expansion Modeled Statistics :

Modeled Expanded Memory Size : 8.00 GB
Achievable Compression ratio :1.90

Expansion Modeled True Modeled CPU Usage
Factor Memory Size Memory Gain Estimate
--------- ------------- ------------------ -----------
 1.00 8.00 GB 0.00 KB [0%] 0.00 [0%]
 1.11 7.25 GB 768.00 MB [10%] 0.00 [0%]
 1.19 6.75 GB 1.25 GB [19%] 0.00 [0%]
 1.28 6.25 GB 1.75 GB [28%] 0.00 [0%]
 1.34 6.00 GB 2.00 GB [33%] 0.00 [0%]
 1.46 5.50 GB 2.50 GB [45%] 0.00 [0%]
 1.53 5.25 GB 2.75 GB [52%] 0.00 [0%]

Active Memory Expansion Recommendation:

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 5.25 GB and to configure a memory expansion factor
of 1.53. This will result in a memory gain of 52%. With this
configuration, the estimated CPU usage due to AME is approximately 0.00
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 0.00 physical processors.

NOTE: amepat's recommendations are based on the workload's utilization level
during the monitored period. If there is a change in the workload's utilization
level or a change in workload itself, amepat should be run again.

The modeled Active Memory Expansion CPU usage reported by amepat is just an
estimate. The actual CPU usage used for Active Memory Expansion may be lower
or higher depending on the workload.

Example 5-48 shows amepat with heavy memory consumption. It shows a high memory
compression ratio because the test program consumes garbage memory.

Example 5-48 The amepat command

amepat 1 5

Command Invoked : amepat 1 5

Date/Time of invocation : Wed Oct 10 11:36:07 CDT 2012
Total Monitored time : 6 mins 2 secs
Total Samples Collected : 5

System Configuration:

Chapter 5. Testing the environment 245

Partition Name : p750s1aix4
Processor Implementation Mode : POWER7 Mode
Number Of Logical CPUs : 16
Processor Entitled Capacity : 1.00
Processor Max. Capacity : 4.00
True Memory : 8.00 GB
SMT Threads : 4
Shared Processor Mode : Enabled-Uncapped
Active Memory Sharing : Disabled
Active Memory Expansion : Disabled

System Resource Statistics: Average Min Max
--------------------------- ----------- ----------- -----------
CPU Util (Phys. Processors) 0.13 [3%] 0.00 [0%] 0.31 [8%]
Virtual Memory Size (MB) 6317 [77%] 2592 [32%] 9773 [119%]
True Memory In-Use (MB) 5922 [72%] 2546 [31%] 8178 [100%]
Pinned Memory (MB) 1454 [18%] 1447 [18%] 1460 [18%]
File Cache Size (MB) 296 [4%] 23 [0%] 1389 [17%]
Available Memory (MB) 2487 [30%] 6 [0%] 5630 [69%]

Active Memory Expansion Modeled Statistics :

Modeled Expanded Memory Size : 8.00 GB
Achievable Compression ratio :6.63

Expansion Modeled True Modeled CPU Usage
Factor Memory Size Memory Gain Estimate
--------- ------------- ------------------ -----------
 1.04 7.75 GB 256.00 MB [3%] 0.00 [0%]
 1.34 6.00 GB 2.00 GB [33%] 0.00 [0%]
 1.69 4.75 GB 3.25 GB [68%] 0.00 [0%]
 2.00 4.00 GB 4.00 GB [100%] 0.00 [0%]
 2.29 3.50 GB 4.50 GB [129%] 0.00 [0%]
 2.67 3.00 GB 5.00 GB [167%] 0.00 [0%]
 2.91 2.75 GB 5.25 GB [191%] 0.00 [0%]

Active Memory Expansion Recommendation:

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 2.75 GB and to configure a memory expansion factor
of 2.91. This will result in a memory gain of 191%. With this
configuration, the estimated CPU usage due to AME is approximately 0.00
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 0.31 physical processors.

NOTE: amepat's recommendations are based on the workload's utilization level
during the monitored period. If there is a change in the workload's utilization
level or a change in workload itself, amepat should be run again.

The modeled Active Memory Expansion CPU usage reported by amepat is just an
estimate. The actual CPU usage used for Active Memory Expansion may be lower
or higher depending on the workload.
246 IBM Power Systems Performance Guide: Implementing and Optimizing

The topas command
The topas command shows the following active memory expansion metrics on the default
panel when started with no options:

� TMEM, MB - True memory size in megabytes.

� CMEM, MB - Compressed pool size in megabytes.

� EF[T/A] - Expansion factors: Target and Actual.

� CI - Compressed pool page-ins.

� CO - Compressed pool page-outs.

Example 5-49 shows an example of the topas panel.

Example 5-49 Monitoring active memory expansion with the topas command

Topas Monitor for host:p750s1aix4 EVENTS/QUEUES FILE/TTY
Wed Oct 10 13:31:19 2012 Interval:FROZEN Cswitch 4806.0M Readch 3353.8G
 Syscall 1578.4M Writech 3248.8G
CPU User% Kern% Wait% Idle% Physc Entc% Reads 49.8M Rawin 642.2K
Total 38.1 61.9 0.0 0.0 2.62 262.41 Writes 101.6M Ttyout 25.5M
 Forks 1404.8K Igets 4730
Network BPS I-Pkts O-Pkts B-In B-Out Execs 1463.8K Namei 110.2M
Total 0 0 0 0 0 Runqueue 3.00M Dirblk 95749
 Waitqueue 65384.6
Disk Busy% BPS TPS B-Read B-Writ MEMORY
Total 0.0 0 0 0 0 PAGING Real,MB 8192
 Faults 2052.0M % Comp 18
FileSystem BPS TPS B-Read B-Writ Steals 802.8M % Noncomp 0
Total 2.52M 2.52K 2.52M 0 PgspIn 547.4K % Client 0
 PgspOut 126.3M
Name PID CPU% PgSp Owner PageIn 4204.6K PAGING SPACE
inetd 4718746 0.0 536K root PageOut 936.4M Size,MB 8192
lrud 262152 0.0 640K root Sios 908.0M % Used 1
hostmibd 4784176 0.0 1.12M root % Free 99
psmd 393228 0.0 640K root AME
aixmibd 4849826 0.0 1.30M root TMEM,MB 2815.2M WPAR Activ 0
hrd 4915356 0.0 924K root CMEM,MB 1315.7M WPAR Total 0
reaffin 589842 0.0 640K root EF[T/A] 2.91 Press: "h"-help
sendmail 4980888 0.0 1.05M root CI:0.0KCO:0.1K "q"-quit
lvmbb 720920 0.0 448K root
vtiol 786456 0.0 1.06M root
ksh 6226074 0.0 556K root
pilegc 917532 0.0 640K root
xmgc 983070 0.0 448K root

5.5.4 Paging space utilization

When a program requests some memory and that amount cannot be satisfied in RAM, the
Virtual Memory Manager (VMM), through the last recently used (lru) algorithm, selects some
pages to be moved to paging space, also called swap space. This is called a page-out. This
allows the memory request to be fulfilled. When these pages in swap are needed again, they
are read from hard disk and moved back into RAM. This is called page-in.
Chapter 5. Testing the environment 247

Excess of paging is bad for performance because access to paging devices (disks) is many
times slower than access to RAM. Therefore, it is important to have a good paging setup, as
shown in 4.2.2, “Paging space” on page 128, and to monitor the paging activity.

Beginners in AIX think that if they look at the paging space utilization and see a high number,
that is bad. Looking at the output of lsps -a and having a paging space utilization greater
than zero, does not mean that AIX is memory constraint at the moment.

Example 5-50 shows paging space utilization at 71%. However, this does not mean that AIX
is paging or that the system has low free memory available. In Example 5-51, the output of
svmon shows 6168.44 MB of available memory and 1810.98 MB of paging space used.

Example 5-50 Looking at paging space utilization

lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type Chksum
hd6 hdisk0 rootvg 2560MB 71 yes yes lv 0

Example 5-51 Available memory and paging utilization

svmon -O summary=basic,unit=MB
Unit: MB
--
 size inuse free pin virtual available mmode
memory 8192.00 2008.56 6183.44 1208.25 3627.14 6168.44 Ded
pg space 2560.00 1810.98

 work pers clnt other
pin 678.94 0 0 529.31
in use 1835.16 0 173.40

The percent paging space utilization means that at some moment AIX VMM required that
amount of paging. After this peak of memory requirements, some process that had pages
paged out did not require a page-in of such pages, or if the page-in was required, it was for
read access and not for modifying. Paging space garbage collection, by default, only operates
when a page-in happens. If the page is brought back into memory to read-only operations, it
is not freed up from paging space. This provides better performance because if the page
remains unmodified and is stolen from RAM by the LRU daemon, it is not necessary to
perform the repage-out function.

One important metric regarding paging is paging in and paging out. In Example 5-52 using
topas we see AIX during a low paging activity. PgspIn is the number of 4 K pages read from
paging space per second over the monitoring interval. PgspOut is the number of 4 K pages
written to paging space per second over the monitoring interval.

Example 5-52 topas showing small paging activity

Topas Monitor for host:p750s2aix4 EVENTS/QUEUES FILE/TTY
Mon Oct 8 18:52:33 2012 Interval:2 Cswitch 400 Readch 2541
 Syscall 227 Writech 512
CPU User% Kern% Wait% Idle% Physc Entc% Reads 28 Rawin 0
Total 0.2 0.5 0.0 99.3 0.01 1.36 Writes 1 Ttyout 246
 Forks 0 Igets 0
Network BPS I-Pkts O-Pkts B-In B-Out Execs 0 Namei 24
Total 677.0 4.00 2.00 246.0 431.0 Runqueue 1.00 Dirblk 0

Tip: It is safer to use the lsps -s command rather than the lsps -a.
248 IBM Power Systems Performance Guide: Implementing and Optimizing

 Waitqueue 0.0
Disk Busy% BPS TPS B-Read B-Writ MEMORY
Total 0.0 458K 81.50 298K 160K PAGING Real,MB 8192
 Faults 88 % Comp 98
FileSystem BPS TPS B-Read B-Writ Steals 40 % Noncomp 1
Total 2.48K 28.50 2.48K 0 PgspIn 74 % Client 1
 PgspOut 40
Name PID CPU% PgSp Owner PageIn 74 PAGING SPACE
java 8388796 0.5 65.2M root PageOut 40 Size,MB 2560
syncd 786530 0.2 596K root Sios 87 % Used 89
java 6553710 0.1 21.0M root % Free 11
topas 7995432 0.1 2.04M root NFS (calls/sec)
lrud 262152 0.0 640K root SerV2 0 WPAR Activ 0
getty 6815754 0.0 640K root CliV2 0 WPAR Total 1
vtiol 851994 0.0 1.06M root SerV3 0 Press: "h"-help
gil 2162754 0.0 960K root CliV3 0 "q"-quit

In Example 5-53, using vmstat, you see AIX during a high paging activity.

Example 5-53 vmstat showing considerable paging activity

vmstat 5

System configuration: lcpu=16 mem=8192MB ent=1.00

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec
 2 0 2241947 5555 0 3468 3448 3448 3448 0 3673 216 7489 9 4 84 3 0.26 26.0
 2 0 2241948 5501 0 5230 5219 5219 5222 0 5521 373 11150 14 6 71 9 0.39 38.6
 2 1 2241948 5444 0 5156 5145 5145 5145 0 5439 83 10972 14 6 76 4 0.40 40.1
 1 0 2241959 5441 0 5270 5272 5272 5272 0 5564 435 11206 14 6 70 9 0.39 38.9
 1 1 2241959 5589 0 5248 5278 5278 5278 0 5546 82 11218 14 6 76 4 0.41 40.9

If your system is consistently presenting high page-in or page-out rates, your performance is
probably being affected due to memory constraints.

5.5.5 Memory size simulation with rmss

It is possible to simulate reduced sizes of memory without performing a dlpar operation and
without stopping the partition. The rmss command—reduced memory system simulator—can
be used to test application and system behavior with different memory scenarios.

The main use for the rmss command is as a capacity planning tool to determine how much
memory a workload needs.

To determine whether the rmss command is installed and available, run the following
command:

lslpp -lI bos.perf.tools

You can use the rmss command in two modes:

� To change the system memory size.

� To execute a specified application multiple times over a range of memory sizes and display
important statistics that describe the application's performance at each memory size.
Chapter 5. Testing the environment 249

Example 5-54 shows rmss changing the memory to 4 GB, the first mode.

Example 5-54 Using rmss to simulate a system with 4 GB memory

rmss -c 4096
Simulated memory size changed to 4096 Mb.
Warning: This operation might impact the system environment.
Please refer vmo documentation to resize the appropriate parameters.

The simulated memory can be verified with the -p flag; to reset to physical real memory, use
the -r flag.

5.5.6 Memory leaks

Memory leak is a software error in which the program allocates memory and never releases it
after use. In a long-running program, memory leak is a serious problem because it can
exhaust the system real memory and paging space, leading to a program or system crash.

Memory leaks are not to be confused with caching or any other application behavior.
Processes showing an increase in memory consumption may not be leaking memory.
Instead, that can actually be the expected behavior, depending on what the program is
intended to do.

Before continuing, it must be clear that memory leaks can only be confirmed with source code
analysis. However, some system analysis may help in identifying possible programs with
problems.

A memory leak can be detected with the ps command, using the v flag. This flag displays a
SIZE column, which shows the virtual size of the data section of the process.

Using ps, the information of a process with pid 6291686 is collected at 30-second intervals, as
seen in Example 5-55.

Example 5-55 Using ps to collect memory information

while true ; do ps v 6291686 >> /tmp/ps.out ; sleep 30 ; done

Example 5-56 shows the increase in the SIZE.

Example 5-56 Increase in memory utilization

grep PID /tmp/ps.out | head -n 1 ; grep 6291686 /tmp/ps.out
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
 6291686 pts/2 A 0:00 0 156 164 xx 1 8 0.0 0.0 ./test_
 6291686 pts/2 A 0:00 0 156 164 xx 1 8 0.0 0.0 ./test_
 6291686 pts/2 A 0:00 0 160 168 xx 1 8 0.0 0.0 ./test_
 6291686 pts/2 A 0:00 0 164 172 xx 1 8 0.0 0.0 ./test_
 6291686 pts/2 A 0:00 0 164 172 xx 1 8 0.0 0.0 ./test_
 6291686 pts/2 A 0:00 0 168 176 xx 1 8 0.0 0.0 ./test_
 6291686 pts/2 A 0:00 0 172 180 xx 1 8 0.0 0.0 ./test_

Note: The SIZE column does not represent the same as the SZ column produced by the -l
flag. Although sometimes they show the same value, they can be different if some pages of
the process are paged out.
250 IBM Power Systems Performance Guide: Implementing and Optimizing

Another command that can be used is svmon, which looks for processes whose working
segment continually grows. To determine whether a segment is growing, use svmon with the -i
<interval> option to look at a process or a group of processes and see whether any segment
continues to grow.

Example 5-57 shows how to start collecting data with svmon. Example 5-58 shows the
increase in size for segment 2 (Esid 2 - process private).

Example 5-57 Using svmon to collect memory information

svmon -P 6291686 -i 30 > /tmp/svmon.out

Example 5-58 Output of svmon showing increase in memory utilization

grep Esid /tmp/svmon.out | head -n 1 ; grep " 2 work" /tmp/svmon.out
 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 9a0dba 2 work process private sm 20 4 0 20
 9a0dba 2 work process private sm 20 4 0 20
 9a0dba 2 work process private sm 21 4 0 21
 9a0dba 2 work process private sm 22 4 0 22
 9a0dba 2 work process private sm 22 4 0 22
 9a0dba 2 work process private sm 23 4 0 23
 9a0dba 2 work process private sm 24 4 0 24
 9a0dba 2 work process private sm 24 4 0 24

5.6 Disk storage bottleneck identification

When finding that there is a performance bottleneck related to external disk storage, it can be
challenging to find the source of the problem. It can be in any component of the server, SAN
or storage infrastructures. This section explains some of the performance metrics to look at
when diagnosing a performance problem, and where to look in the event that you have an I/O
performance problem.

5.6.1 Performance metrics

There are different metrics to consider when looking at the disk utilization of an AIX system.
To identify a bottleneck, you first need to understand the metrics involved to be able to identify
a problem.

Table 5-3 gives a summary of key performance metrics to understand when investigating an
I/O performance problem on an AIX system.

Table 5-3 Key performance metrics

Important: Never assume that a program is leaking memory only by monitoring the
operating system. Source code analysis must always be conducted to confirm the problem.

Metric Description

IOPS IOPS represents the amount of read or write I/O operations performed in a
1-second time interval.

Throughput Throughput is the amount of data that can be transferred between the server
and the storage measured in megabytes per second.
Chapter 5. Testing the environment 251

Depending on the type of I/O that is being performed, the service times may differ. An I/O
operation with a small transfer size would be expected to have a significantly smaller service
time than an I/O with a large transfer size because the larger I/O operation is bigger and more
data has to be processed to service it. Larger I/O operations are also typically limited to
throughput. For instance, the service time of a 32 k I/O will be significantly larger than an 8 k
I/O because the 32 k I/O is four times the size of the 8 k I/O.

When trying to identify a performance bottleneck it is necessary to understand whether the
part of your workload that may not be performing adequately (for example, a batch job) is
using small block random I/O or large block sequential I/O.

5.6.2 Additional workload and performance implications

A storage system, dependant on its configuration, will be able to sustain a certain amount of
workload until at some point one or more components become saturated and the service
time, also known as response time, increases exponentially.

It is important to understand the capability of the storage system that the AIX system is using,
and what its upper boundary is in terms of performance.

In Figure 5-11 a storage system shows to have the capability to service I/O requests up to
50,000 IOPS of a certain transfer size under 10 milliseconds, which is considered to be
acceptable in most cases. You can see that once the storage system is performing beyond
50,000 I/O operations, it reaches a breaking point where response time rises significantly.

Figure 5-11 Effect of I/O rate on response time

When a workload increases, or new workloads are added to an existing storage system, we
suggest that you talk to your storage vendor to understand what the capability of the current
storage system is before it is saturated. Either adding more disks (spindles) to the storage or

Transfer size The transfer size typically measured in kilobytes is the size of an I/O request.

Wait time Wait time is the amount of time measured in milliseconds that the server’s
processor has to wait for a pending I/O to complete. The pending I/O could be
in the queue for the I/O device, increasing the wait time for an I/O request.

Service time Service time is the time taken for the storage system to service an I/O transfer
request in milliseconds.

Metric Description
252 IBM Power Systems Performance Guide: Implementing and Optimizing

looking at intelligent automated tiering technologies with solid state drives might be
necessary to boost the performance of the storage system.

5.6.3 Operating system - AIX

When looking at the AIX operating system to find the source of an I/O performance
bottleneck, it needs to be established whether there is a configuration problem causing the
bottleneck, or whether the I/O bottleneck exists outside of the AIX operating system.

The initial place to look in AIX is the error report to check whether there are any problems that
have been detected by AIX, because an event may have occurred for the problem to arise.
Example 5-59 demonstrates how to check the AIX error report.

Example 5-59 Checking errpt in AIX

root@aix1:/ # errpt
DE3B8540 1001105612 P H hdisk0 PATH HAS FAILED
DE3B8540 1001105612 P H hdisk2 PATH HAS FAILED
DE3B8540 1001105612 P H hdisk3 PATH HAS FAILED
DE3B8540 1001105612 P H hdisk1 PATH HAS FAILED
4B436A3D 1001105612 T H fscsi0 LINK ERROR
root@aix1:/ #

If any errors are present on the system, such as failed paths, they need to be corrected. In the
event that there are no physical problems, another place to look is at the disk service time by
using the iostat and sar commands. Using iostat is covered in 4.3.2, “Disk device tuning”
on page 143. The sar command is shown in Example 5-60.

Example 5-60 Disk analysis with sar with a single 10-second interval

root@aix1:/ # sar -d 10 1

AIX aix1 1 7 00F6600E4C00 10/08/12

System configuration: lcpu=32 drives=4 ent=3.00 mode=Uncapped

06:41:48 device %busy avque r+w/s Kbs/s avwait avserv

06:41:58 hdisk3 100 4.3 1465 1500979 96.5 5.5
 hdisk1 0 0.0 0 0 0.0 0.0
 hdisk0 0 0.0 0 0 0.0 0.0
 hdisk2 100 18.0 915 234316 652.7 8.8

root@aix1:/ #

The output of Example 5-60 shows the following indicators of a performance bottleneck:

� Disks hdisk2 and hdisk3 are busy, while hdisk0 and hdisk 1 are idle. This is shown by
% busy, which is the percentage of time that the disks have been servicing I/O requests.

� There are a number of requests outstanding in the queue for hdisk2 and hdisk3. This is
shown in avque and is an indicator that there is a performance problem.

� The average number of transactions waiting for service on hdisk2 and hdisk3 is also
indicating a performance issue, shown by avwait.

� The average service time from the physical disk storage is less than 10 milliseconds on
both hdisk2 and hdisk3, which is acceptable in most cases. This is shown in avserv.
Chapter 5. Testing the environment 253

The output of sar shows us that we have a queuing issue on hdisk2 and hdisk3, so it is
necessary to follow the steps covered in 4.3.2, “Disk device tuning” on page 143 to resolve
this problem.

When looking at fiber channel adapter statistics, it is important to look at the output of the
fcstat command in both AIX and the VIO servers. The output demonstrates whether there
are issues with the fiber channel adapters. Example 5-61 shows the items of interest from the
output of fcstat. 4.3.5, “Adapter tuning” on page 150 describes how to interpret and resolve
issues with queuing on fiber channel adapters.

Example 5-61 Items of interest in the fcstat output

FC SCSI Adapter Driver Information
 No DMA Resource Count: 0
 No Adapter Elements Count: 0
 No Command Resource Count: 0

A large amount of information is presented by commands such as iostat, sar, and fcstat,
which typically provide real time monitoring. To look at historical statistics, nmon is included
with AIX 6.1 and later, and can be configured to record performance data. With the correct
options applied, nmon recording can store all the information.

It is suggested to use nmon to collect statistics that can be opened with the nmon analyzer and
converted into Microsoft Excel graphs.

The nmon analyzer can be obtained from:

http://www.ibm.com/developerworks/wikis/display/Wikiptype/nmonanalyser

This link contains some further information about the nmon analyzer tool:

http://www.ibm.com/developerworks/aix/library/au-nmon_analyser/index.html

Example 5-62 demonstrates how to create a 5 GB file system to store the nmon recordings.
Depending on how long you want to store the nmon recordings and how many devices are
attached to your system, you may need a larger file system.

Example 5-62 Creating a jfs2 file system for NMON recordings

root@aix1:/ # mklv -y nmon_lv -t jfs2 rootvg 1 hdisk0
nmon_lv
root@aix1:/ # crfs -v jfs2 -d nmon_lv -m /nmon -a logname=INLINE -A yes
File system created successfully.
64304 kilobytes total disk space.
New File System size is 131072
root@aix1:/ # chfs -a size=5G /nmon
Filesystem size changed to 10485760
Inlinelog size changed to 20 MB.
root@aix1:/ # mount /nmon
root@aix1:/ # df -g /nmon
Filesystem GB blocks Free %Used Iused %Iused Mounted on
/dev/nmon_lv 5.00 4.98 1% 4 1% /nmon

Note: If you are using Virtual SCSI disks, be sure that any tuning attributes on the hdisk in
AIX match the associated hdisk on the VIO servers. If you make a change, the attributes
must be changed on the AIX device and on the VIO server backing device.
254 IBM Power Systems Performance Guide: Implementing and Optimizing

http://www.ibm.com/developerworks/wikis/display/Wikiptype/nmonanalyser
http://www.ibm.com/developerworks/aix/library/au-nmon_analyser/index.html

root@aix1:/ #

Once the file system is created, the next step is to edit the root crontab. Example 5-63
demonstrates how to do this.

Example 5-63 How to edit the root crontab

root@aix1:/# crontab -e

Example 5-64 shows two sample crontab entries. One entry is to record daily nmon statistics,
while the other entry is to remove the nmon recordings after 60 days. Depending on how long
you require nmon recordings to be stored for, you may need to have a crontab entry to remove
them after a different period of time. You manually need to insert entries into your root
crontab.

Example 5-64 Sample crontab to capture nmon recordings and remove them after 60 days

Start NMON Recording
00 00 * * * /usr/bin/nmon -dfPt -^ -m /nmon
Remove NMON Recordings older than 60 Days
01 00 * * * /usr/bin/find /nmon -name "*.nmon" -type f -mtime +60 ! -name
"*hardened*" |xargs -n1 /bin/rm -f

5.6.4 Virtual I/O Server

When looking at one or more VIOSs to find the source of an I/O performance bottleneck, it
needs to be established whether there is a configuration problem causing the bottleneck, or
whether the I/O bottleneck exists outside of the VIOS.

The initial place to look in VIOS is the error log to check whether there are any problems that
have been detected by VIOS, because there may be an event that has occurred for the
problem to arise. Example 5-65 demonstrates how to check the VIOS error log.

Example 5-65 Checking the VIOS error log

$ errlog
DF63A4FE 0928084612 T S vhost8 Virtual SCSI Host Adapter detected an er
DF63A4FE 0928084512 T S vhost8 Virtual SCSI Host Adapter detected an er
$

If any errors are present, they need to be resolved to ensure that there are no configuration
issues causing a problem. It is also important to check the fiber channel adapters assigned to
the VIOS to ensure that they are not experiencing a problem.

4.3.5, “Adapter tuning” on page 150 describes how to interpret and resolve issues with
queuing on fiber channel adapters. You can check fcstat in exactly the same way you would
in AIX, and the items of interest are the same. This is shown in Example 5-66.

Example 5-66 Items of interest in the fcstat output

FC SCSI Adapter Driver Information
 No DMA Resource Count: 0
 No Adapter Elements Count: 0
 No Command Resource Count: 0
Chapter 5. Testing the environment 255

Another consideration when using NPIV is to make an analysis of how many virtual fiber
channel adapters are mapped to the physical fiber channel ports on the VIOS.

If there is a case where there are some fiber channel ports on the VIOS that have more virtual
fiber channel adapters mapped to them than others, this could cause some ports to be
exposed to a performance degradation and others to be underutilized.

Example 5-67 shows the lsnports command, which can be used to display how many
mappings are present on each physical fiber channel port.

Example 5-67 The lsnports command

$ lsnports
name physloc fabric tports aports swwpns awwpns
fcs0 U78A0.001.DNWK4AS-P1-C2-T1 1 64 51 2048 2015
fcs1 U78A0.001.DNWK4AS-P1-C2-T2 1 64 50 2048 2016
fcs2 U78A0.001.DNWK4AS-P1-C4-T1 1 64 51 2048 2015
fcs3 U78A0.001.DNWK4AS-P1-C4-T2 1 64 50 2048 2016
$

The lsnports command displays the information summarized in Table 5-4.

Table 5-4 lsnports

The output of lsnports in Example 5-67 shows the following:

� Our Virtual I/O Server has two dual-port fiber channel adapters.

� Each port is capable of having 64 virtual fiber channel adapters mapped to it.

� The ports fcs0 and fcs2 have 13 client virtual fiber channel adapters mapped to them and
fcs1 and fcs3 have14 virtual fiber channel adapters mapped to them. This demonstrates a
balanced configuration were load is evenly distributed across multiple virtual fiber channel
adapters.

5.6.5 SAN switch

In the event that the AIX system and VIOS have the optimal configuration, and an I/O
performance issue still exists, the next thing to be checked in the I/O chain is the SAN fabric.

Field Description

name Physical port name

physloc Physical location code

fabric Fabric support

tports Total number of NPIV ports

aports Number of available NPIV ports

swwpns Total number of worldwide port names supported by the adapter

awwpns Number of world-wide port names available for use

Note: When looking at a VIOS, some statistics are also shown in the VIOS Performance
Advisor, which is covered in 5.9, “VIOS performance advisor tool and the part command”
on page 271, which can provide some insight into the health of the VIOS.
256 IBM Power Systems Performance Guide: Implementing and Optimizing

If you are using an 8 G fiber channel card, we suggest that you use a matching 8 G small
form-factor pluggable (SFP) transceiver in the fabric switch.

It is worthwhile to check the status of the ports that the POWER system is using to ensure
that there are no errors on the port. Example 5-68 demonstrates how to check the status of
port 0 on an IBM B type fabric switch.

Example 5-68 Use of the portshow command

pw_2002_SANSW1:admin> portshow 0
portIndex: 0
portName:
portHealth: HEALTHY

Authentication: None
portDisableReason: None
portCFlags: 0x1
portFlags: 0x1024b03 PRESENT ACTIVE F_PORT G_PORT U_PORT NPIV LOGICAL_ONLINE
LOGIN NOELP LED ACCEPT FLOGI
LocalSwcFlags: 0x0
portType: 17.0
POD Port: Port is licensed
portState: 1 Online
Protocol: FC
portPhys: 6 In_Sync portScn: 32 F_Port
port generation number: 320
state transition count: 47

portId: 010000
portIfId: 4302000f
portWwn: 20:00:00:05:33:68:84:ae
portWwn of device(s) connected:
 c0:50:76:03:85:0e:00:00
 c0:50:76:03:85:0c:00:1d
 c0:50:76:03:85:0e:00:08
 c0:50:76:03:85:0e:00:04
 c0:50:76:03:85:0c:00:14
 c0:50:76:03:85:0c:00:08
 c0:50:76:03:85:0c:00:10
 c0:50:76:03:85:0e:00:0c
 10:00:00:00:c9:a8:c4:a6
Distance: normal
portSpeed: N8Gbps

LE domain: 0
FC Fastwrite: OFF
Interrupts: 0 Link_failure: 0 Frjt: 0
Unknown: 38 Loss_of_sync: 19 Fbsy: 0
Lli: 152 Loss_of_sig: 20
Proc_rqrd: 7427 Protocol_err: 0
Timed_out: 0 Invalid_word: 0
Rx_flushed: 0 Invalid_crc: 0
Tx_unavail: 0 Delim_err: 0
Free_buffer: 0 Address_err: 0
Overrun: 0 Lr_in: 19
Suspended: 0 Lr_out: 0
Chapter 5. Testing the environment 257

Parity_err: 0 Ols_in: 0
2_parity_err: 0 Ols_out: 19
CMI_bus_err: 0

Port part of other ADs: No

When looking at the output of Example 5-68 on page 257, it is important to determine the
WWNs of the connected clients. In this example, there are eight NPIV clients attached to the
port. It is also important to check the overrun counter to see whether the switch port has had
its buffer exhausted.

The switch port configuration can be modified. However, this may affect other ports and
devices attached to the fabric switch. In the case that a SAN switch port is becoming
saturated, it is suggested that you balance your NPIV workload over more ports. This can be
analyzed by using the lsnports command on the VIOS as described in 5.6.4, “Virtual I/O
Server” on page 255.

5.6.6 External storage

The final link in the I/O chain is the physical storage attached to the POWER system. When
AIX, the VIOS, and the SAN fabric have been checked and are operating correctly, the final
item to check is the physical storage system.

Depending on the storage system you are using, the storage vendor typically has a number of
tools available to view the storage system utilization. It is suggested to consult your storage
administrator to look at the performance of the volumes presented to the POWER system. An
example tool that can be used is IBM Tivoli Storage Productivity Center to perform an
analysis of IBM disk storage products.

The items of interest determine whether there is a configuration problem on the storage side,
including but not limited to some of the items in Table 5-5.

Table 5-5 External storage items of interest

Item Description

Read Response Time When a read I/O request is issued by an attached host, this is the
amount of time taken by the storage to service the request. The
response time is dependant on the size of the I/O request, and the
utilization of the storage. Typically, the read response time for
small block I/O should be 10 milliseconds or less, while for large
block I/O the response time should be 20 milliseconds or less.

Write Response Time When a host performs a write to the storage system, the write
response time is the amount of time in milliseconds it takes for the
storage system to accept the write and send an acknowledgment
back to the host. The response time for writes should ideally be
less than 5 milliseconds because the write will be cached in the
storage controller’s write cache. In the event that the response
time for writes is large, then this suggests that the writes are
missing the storage controller’s cache.

Read Cache Hit % When a host issues a read request, this is the percentage of the
I/O requests that the read is able to read from the storage
controller’s cache, rather than having to read the data from disk.
When a workload is considered cache friendly, this describes a
workload that will have its read predominantly serviced from
cache.
258 IBM Power Systems Performance Guide: Implementing and Optimizing

5.7 Network utilization

Usually, network utilization is quite easy to understand because it does not have as many
factors changing the way it behaves as the processors have. However, network topology is
built of several layers that can individually affect the network performance on the environment.

Think of a complex environment with WPARs running on top of one or more LPARs using
virtual network adapters provided by VIOS with a Shared Ethernet Adapter configured over
Etherchannel interfaces, which in turn connect to network switches, routers, and firewalls. In
such scenarios, there would be many components and configurations that could simply slow
down the network throughput.

Measuring network statistics in that environment would be quite a complex task. However,
from an operating system point of view, there are some things that we can do to monitor a
smaller set of network components.

Write Cache Hit % When a host performs a write, the percentage of the writes that are
able to be cached in the storage controller’s write cache. In the
event that the write cache hit % is low, this may indicate a problem
with the storage controller’s write cache being saturated.

Volume Placement Volume placement within a storage system is important when
considering AIX LVM spreading or striping. When a logical volume
is spread over multiple hdisk devices, there are some
considerations for the storage system volumes that are what AIX
sees as hdisks. It is important that all storage system volumes
associated with an AIX logical volume exist on the same disk
performance class.

Port Saturation It is important to check that the storage ports that are zoned to the
AIX systems are not saturated or overloaded. It is important for the
storage administrator to consider the utilization of the storage
ports.

RAID Array Utilization The utilization of a single RAID array is becoming less of an issue
on many storage systems that have a wide striping capability. This
is where multiple RAID arrays are pooled together and when a
volume is created it is striped across all of the RAID arrays in the
pool. This ensures that the volume is able to take advantage of all
of the aggregate performance of all of the disks in the pool. In the
event that a single RAID array is performing poorly, examine the
workload on that array, and that any pooling of RAID arrays has
the volumes evenly striped.

Automated Tiering It is becoming more common that storage systems have an
automated tiering feature. This provides the capability to have
different classes of disks inside the storage system (SATA, SAS,
and SSD), and the storage system will examine how frequently the
blocks of data inside host volumes are accessed and place them
inside the appropriate storage class. In the event that the amount
of fast disk in the storage is full, and some workloads are not
having their busy blocks promoted to a faster disk class, it may be
necessary to review the amount of fast vs. slow disk inside the
storage system.

Item Description
Chapter 5. Testing the environment 259

5.7.1 Network statistics

Network statistics tell how the network is behaving. Several counters and other information is
available to alert about the system running out of resources, possible hardware faults, some
workload behavior, and other problems on the network infrastructure itself.

On AIX, network statistics can be gathered with the commands entstat, netstat, and
netpmon.

The entstat command
Example 5-69 illustrates the output of the entstat command used to gather statistics from the
Ethernet adapters of the system. Some of these are as follows:

� Transmit errors and receive errors

These two counters indicate whether any communication errors have occurred due to
problems on the hardware or the network. Ideally these fields should report a value of
zero, but specific events on the network may cause these fields to report some positive
value. However, if any of these fields present a non-zero value, it is suggested that the
system be monitored for some time because this may also indicate a local hardware fault.

� Packets dropped

Packets dropped appear on both transmit and receive sides and are an indication of
problems. They are not tied to specific events, but if packets are dropped for any reason
this counter will increase.

� Bad packets

Bad packets can be caused by several different problems on the network. The importance
of this counter is that bad packets cause retransmission and overhead.

� Max packets on S/W transmit queue

This value indicates the maximum size of the transmit queue supported by the hardware
when it does not support software queues. If this limit is reached, the system reports that
information on the S/W transmit queue overflow counter.

� No mbuf errors

These errors should appear if the system runs out of mbuf structures to allocate data for
transmit or receive operations. In this case, the packets dropped counter will also increase.

Example 5-69 entstat - output from interface ent0

entstat ent0

ETHERNET STATISTICS (en0) :
Device Type: Virtual I/O Ethernet Adapter (l-lan)
Hardware Address: 52:e8:76:4f:6a:0a
Elapsed Time: 1 days 22 hours 16 minutes 21 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 12726002 Packets: 48554705
Bytes: 7846157805 Bytes: 69529055717
Interrupts: 0 Interrupts: 10164766
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 0
260 IBM Power Systems Performance Guide: Implementing and Optimizing

S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 755 Broadcast Packets: 288561
Multicast Packets: 755 Multicast Packets: 23006
No Carrier Sense: 0 CRC Errors: 0
DMA Underrun: 0 DMA Overrun: 0
Lost CTS Errors: 0 Alignment Errors: 0
Max Collision Errors: 0 No Resource Errors: 0
Late Collision Errors: 0 Receive Collision Errors: 0
Deferred: 0 Packet Too Short Errors: 0
SQE Test: 0 Packet Too Long Errors: 0
Timeout Errors: 0 Packets Discarded by Adapter: 0
Single Collision Count: 0 Receiver Start Count: 0
Multiple Collision Count: 0
Current HW Transmit Queue Length: 0

General Statistics:

No mbuf Errors: 0
Adapter Reset Count: 0
Adapter Data Rate: 20000
Driver Flags: Up Broadcast Running
 Simplex 64BitSupport ChecksumOffload
 DataRateSet

netstat
The netstat command is another tool that gathers useful information about the network. It
does not provide detailed statistics about the adapters themselves but offers a lot of
information about protocols and buffers. Example 5-72 on page 264 illustrates the use of
netstat to check the network buffers.

netpmon
This tool traces the network subsystem and reports statistics collected. This tool is used to
provide some information about processes using the network. Example 5-70 shows a sample
taken from an scp session copying a thousand files with four megabytes. The TCP Socket
Call Statistics reports sshd as the top process using the network. This is because the
command was writing a lot of output to the terminal as the files were transferred.

Example 5-70 netpmon - sample output with Internet Socket Call i/O options (netpmon -O so)

cat netpmon_multi.out
Wed Oct 10 15:31:01 2012
System: AIX 7.1 Node: p750s1aix5 Machine: 00F660114C00

==

Note: entstat does not report information on loopback adapters or other encapsulated
adapters. For example, if you create an Etherchannel ent3 on a VIOS with two interfaces,
ent0 and ent1, encapsulate it in a Shared Ethernet Adapter ent5 using a control-channel
adapter ent4. entstat will only report statistics if ent5 is specified as the argument, but it
will include full statistics for all the underlying adapters. Trying to run entstat on the other
interfaces will result in errors.
Chapter 5. Testing the environment 261

TCP Socket Call Statistics (by Process):
--
 ------ Read ----- ----- Write -----
Process (top 20) PID Calls/s Bytes/s Calls/s Bytes/s
--
ssh 7012600 119.66 960032 117.07 6653
sshd: 7405786 0.37 6057 93.16 14559
--
Total (all processes) 120.03 966089 210.23 21212

==

Detailed TCP Socket Call Statistics (by Process):

PROCESS: /usr//bin/ssh PID: 7012600
reads: 971
 read sizes (bytes): avg 8023.3 min 1 max 8192 sdev 1163.4
 read times (msec): avg 0.013 min 0.002 max 7.802 sdev 0.250
writes: 950
 write sizes (bytes): avg 56.8 min 16 max 792 sdev 25.4
 write times (msec): avg 0.016 min 0.004 max 0.081 sdev 0.005

PROCESS: sshd: PID: 7405786
reads: 3
 read sizes (bytes): avg 16384.0 min 16384 max 16384 sdev 0.0
 read times (msec): avg 0.010 min 0.006 max 0.012 sdev 0.003
writes: 756
 write sizes (bytes): avg 156.3 min 48 max 224 sdev 85.6
 write times (msec): avg 0.008 min 0.003 max 0.051 sdev 0.007

PROTOCOL: TCP (All Processes)
reads: 974
 read sizes (bytes): avg 8049.0 min 1 max 16384 sdev 1250.6
 read times (msec): avg 0.013 min 0.002 max 7.802 sdev 0.250
writes: 1706
 write sizes (bytes): avg 100.9 min 16 max 792 sdev 77.8
 write times (msec): avg 0.013 min 0.003 max 0.081 sdev 0.007

When scp is started with the -q flag to suppress the output, the reports are different. As
shown in Example 5-71, the sshd daemon this time reports zero read calls and only a few
write calls. As a result ssh experienced a gain from almost 30% on the read and write calls
per second. This is an example of how the application behavior may change depending on
how it is used.

Example 5-71 netpmon - sample output with Internet Socket Call i/O options (netpmon -O so)

cat netpmon_multi.out
Wed Oct 10 15:38:08 2012
System: AIX 7.1 Node: p750s1aix5 Machine: 00F660114C00

==
262 IBM Power Systems Performance Guide: Implementing and Optimizing

TCP Socket Call Statistics (by Process):
--
 ------ Read ----- ----- Write -----
Process (top 20) PID Calls/s Bytes/s Calls/s Bytes/s
--
ssh 7078142 155.33 1246306 152.14 8640
sshd: 7405786 0.00 0 0.16 10
--
Total (all processes) 155.33 1246306 152.30 8650

==

Detailed TCP Socket Call Statistics (by Process):

PROCESS: /usr//bin/ssh PID: 7078142
reads: 974
 read sizes (bytes): avg 8023.8 min 1 max 8192 sdev 1161.6
 read times (msec): avg 0.010 min 0.002 max 6.449 sdev 0.206
writes: 954
 write sizes (bytes): avg 56.8 min 16 max 792 sdev 25.4
 write times (msec): avg 0.014 min 0.004 max 0.047 sdev 0.002

PROCESS: sshd: PID: 7405786
writes: 1
 write sizes (bytes): avg 64.0 min 64 max 64 sdev 0.0
 write times (msec): avg 0.041 min 0.041 max 0.041 sdev 0.000

PROTOCOL: TCP (All Processes)
reads: 974
 read sizes (bytes): avg 8023.8 min 1 max 8192 sdev 1161.6
 read times (msec): avg 0.010 min 0.002 max 6.449 sdev 0.206
writes: 955
 write sizes (bytes): avg 56.8 min 16 max 792 sdev 25.3
 write times (msec): avg 0.014 min 0.004 max 0.047 sdev 0.003

5.7.2 Network buffers

Network memory in AIX is controlled by the mbuf management facility, which manages
buckets of different buffer sizes ranging from 32 bytes to 16 kilobytes. The buckets are
constrained on each processor forming a small subset of the entire mbuf pool.

The Virtual Memory Manager (VMM) allocates real memory to the pools. Therefore, the
network buffers are pinned into the real memory and cannot be paged out. This behavior is
good for network performance but also means that network-intensive workloads will consume
more physical memory.

AIX automatically controls the mbuf allocation. The maximum pool size is represented by the
thewall parameter, which in turn represents half the physical memory of the machine limited
to a maximum of 65 GB. This parameter can be overridden by setting the maxmbuf tunable to
a non-zero value (0 = disabled).

Tip: Additional information on tracing and netpmon can be found in Appendix A,
“Performance monitoring tools and what they are telling us” on page 315.
Chapter 5. Testing the environment 263

Example 5-72 illustrates the distribution of the mbuf pool along the processors CPU0, CPU3
and CPU15. Notice that CPU 0 has the highest number of buckets with different sizes (first
column) and with some use. CPU 3 has a lower number with very low utilization and CPU 15
has only four, none of them used.

Example 5-72 netstat output - network memory buffers

netstat -m | egrep -p "CPU (0|3|15)"
******* CPU 0 *******
By size inuse calls failed delayed free hiwat freed
64 663 86677 0 13 297 5240 0
128 497 77045 0 14 271 2620 0
256 1482 228148 0 99 742 5240 0
512 2080 14032002 0 311 1232 6550 0
1024 279 11081 0 121 269 2620 0
2048 549 9103 0 284 53 3930 0
4096 38 829 0 17 2 1310 0
8192 6 119 0 12 1 327 0
16384 128 272 0 25 19 163 0
32768 29 347 0 23 22 81 0
65536 59 162 0 40 9 81 0
131072 3 41 0 0 43 80 0

******* CPU 3 *******
By size inuse calls failed delayed free hiwat freed
64 0 4402 0 0 64 5240 0
128 1 9 0 0 31 2620 0
256 2 20 0 0 14 5240 0
512 2 519181 0 0 102 6550 0
2048 2 21 0 0 10 3930 0
4096 0 66 0 0 10 1310 0
131072 0 0 0 0 16 32 0

******* CPU 15 *******
By size inuse calls failed delayed free hiwat freed
64 0 23 0 0 64 5240 0
512 0 31573 0 0 88 6550 0
4096 0 0 0 0 20 1310 0
131072 0 0 0 0 16 32 0

5.7.3 Virtual I/O Server networking monitoring

In order to configure a network connection in a virtual environment using the VIO Server, first
the link aggregation device should be created in terms of service continuity. The link
aggregation device (ent6) is created using the following command (alternatively, you can use
smitty Etherchannel from the root shell):

$ mkvdev -lnagg ent0,ent2 -attr mode=8023ad hash_mode=src_dsc_port
ent6 Available

Important: We suggest to let the operating system manage the network buffers as much
possible. Attempting to limit the maximum size of memory available for the network buffers
can cause performance issues.
264 IBM Power Systems Performance Guide: Implementing and Optimizing

After the link aggregation device has been created, the Shared Ethernet Adapter (SEA) can
be configured. To create a SEA, use the following command:

$ mkvdev -sea ent6 -vadapter ent4 -default ent4 -defaultid 1
ent8 Available

Next, configure the IP address on the SEA with the following command:

$ mktcpip -hostname 'VIO_Server1' -inetaddr '10.10.10.15' –netmask '255.0.0.0'
interface 'en8

Before starting the transfer tests, however, reset all the statistics for all adapters on the Virtual
I/O Server:

$ entstat -reset ent8 [ent0, ent2, ent6, ent4]

The entstat -all command can be used to provide all the information related to ent8 and all
the adapters integrated to it, as shown in Example 5-73. All the values should be low because
they have just been reset.

Example 5-73 entstat -all command after reset of Ethernet adapters

$ entstat -all ent8 |grep -E "Packets:|ETHERNET"
ETHERNET STATISTICS (ent8) :
Packets: 121 Packets: 111
 Bad Packets: 0
Broadcast Packets: 10 Broadcast Packets: 10
Multicast Packets: 113 Multicast Packets: 108
ETHERNET STATISTICS (ent6) :
Packets: 15 Packets: 97
 Bad Packets: 0
Broadcast Packets: 7 Broadcast Packets: 0
Multicast Packets: 9 Multicast Packets: 109
ETHERNET STATISTICS (ent0) :
Packets: 5 Packets: 87
 Bad Packets: 0
Broadcast Packets: 0 Broadcast Packets: 0
Multicast Packets: 5 Multicast Packets: 87
ETHERNET STATISTICS (ent2) :
Packets: 13 Packets: 6
 Bad Packets: 0
Broadcast Packets: 8 Broadcast Packets: 0
Multicast Packets: 5 Multicast Packets: 6
ETHERNET STATISTICS (ent4) :
Packets: 92 Packets: 9
 Bad Packets: 0
Broadcast Packets: 0 Broadcast Packets: 8
Multicast Packets: 93 Multicast Packets: 0
Invalid VLAN ID Packets: 0
Switch ID: ETHERNET0

You can see the statistics of the Shared Ethernet Adapter (ent8), the link aggregation device
(ent6), the physical devices (ent0 and ent2), and the virtual Ethernet adapter (ent4) by
executing the following commands:

ftp> put "| dd if=/dev/zero bs=1M count=100" /dev/zero
local: | dd if=/dev/zero bs=1M count=100 remote: /dev/zero
229 Entering Extended Passive Mode (|||32851|)
Chapter 5. Testing the environment 265

150 Opening data connection for /dev/zero.
100+0 records in
100+0 records out
104857600 bytes (105 MB) copied, 8.85929 seconds, 11.8 MB/s
226 Transfer complete.
104857600 bytes sent in 00:08 (11.28 MB/s)

You can check which adapter was used to transfer the file. Execute the entstat command
and note the number of packets, as shown in Example 5-74.

Example 5-74 entstat - all command after opening one ftp session

$ entstat -all ent8 |grep -E "Packets:|ETHERNET"
ETHERNET STATISTICS (ent8) :
Packets: 41336 Packets: 87376
 Bad Packets: 0
Broadcast Packets: 11 Broadcast Packets: 11
Multicast Packets: 38 Multicast Packets: 34
ETHERNET STATISTICS (ent6) :
Packets: 41241 Packets: 87521
 Bad Packets: 0
Broadcast Packets: 11 Broadcast Packets: 0
Multicast Packets: 4 Multicast Packets: 34
ETHERNET STATISTICS (ent0) :
Packets: 41235 Packets: 87561
 Bad Packets: 0
Broadcast Packets: 0 Broadcast Packets: 0
Multicast Packets: 2 Multicast Packets: 32
ETHERNET STATISTICS (ent2) :
Packets: 21 Packets: 2
 Bad Packets: 0
Broadcast Packets: 11 Broadcast Packets: 0
Multicast Packets: 2 Multicast Packets: 2
ETHERNET STATISTICS (ent4) :
Packets: 34 Packets: 11
 Bad Packets: 0
Broadcast Packets: 0 Broadcast Packets: 11
Multicast Packets: 34 Multicast Packets: 0
Invalid VLAN ID Packets: 0
Switch ID: ETHERNET0

Compared to the number of packets shown in Example 5-74, see that the number increased
after the first file transfer.

To verify network stability, you can also use entstat (Example 5-75). Confirm all errors, for
example, transmit errors, receive errors, CRC errors, and so on.

Example 5-75 entstat shows various items to verify errors

$ entstat ent8

ETHERNET STATISTICS (ent8) :
Device Type: Shared Ethernet Adapter
Hardware Address: 00:21:5e:aa:af:60
Elapsed Time: 12 days 4 hours 25 minutes 27 seconds

Transmit Statistics: Receive Statistics:
266 IBM Power Systems Performance Guide: Implementing and Optimizing

-------------------- -------------------
Packets: 64673155 Packets: 63386479
Bytes: 65390421293 Bytes: 56873233319
Interrupts: 0 Interrupts: 12030801
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 56
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 23

Broadcast Packets: 5398 Broadcast Packets: 1204907
Multicast Packets: 3591626 Multicast Packets: 11338764
No Carrier Sense: 0 CRC Errors: 0
DMA Underrun: 0 DMA Overrun: 0
Lost CTS Errors: 0 Alignment Errors: 0
Max Collision Errors: 0 No Resource Errors: 0
Late Collision Errors: 0 Receive Collision Errors: 0
Deferred: 0 Packet Too Short Errors: 0
SQE Test: 0 Packet Too Long Errors: 0
Timeout Errors: 0 Packets Discarded by Adapter: 0
Single Collision Count: 0 Receiver Start Count: 0
Multiple Collision Count: 0
Current HW Transmit Queue Length: 23

General Statistics:

No mbuf Errors: 0
Adapter Reset Count: 0
Adapter Data Rate: 2000
Driver Flags: Up Broadcast Running
 Simplex 64BitSupport ChecksumOffload
 LargeSend DataRateSet

Advanced SEA monitoring
To use the SEA monitoring tool (seastat), first enable the tool as follows:

$ chdev -dev ent8 -attr accounting=enabled
ent8 changed

Example 5-76 shows SEA statistics without any search criterion. Therefore, it displays
statistics for all clients that this Virtual I/O Server is serving.

Example 5-76 Sample seastat statistics

$ seastat -d ent8
==
Advanced Statistics for SEA
Device Name: ent8
==
MAC: 6A:88:82:AA:9B:02

VLAN: None
VLAN Priority: None
Transmit Statistics: Receive Statistics:
-------------------- -------------------
Chapter 5. Testing the environment 267

Packets: 7 Packets: 2752
Bytes: 420 Bytes: 185869
==
MAC: 6A:88:82:AA:9B:02

VLAN: None
VLAN Priority: None
IP: 9.3.5.115
Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 125 Packets: 3260
Bytes: 117242 Bytes: 228575
==

This command will show an entry for each pair of VLAN, VLAN priority, IP-address,
and MAC address. So, you will notice in Example there are two entries for several
MAC addresses. One entry is for MAC address and the other one is for the IP
address configured over that MAC

5.7.4 AIX client network monitoring

On the AIX virtual I/O client, you can use the entstat command to monitor a virtual Ethernet
adapter, as shown in the preceding examples. It can also be used to monitor a physical
Ethernet adapter.

5.8 Performance analysis at the CEC

This section gives an overview of monitoring a Power system at the Central Electronics
Complex (CEC) level. The Hardware Management Console (HMC) helps to connect with
multiple Power servers and to perform administrative tasks both locally and remotely. Using
the LPAR2RRD tool you can monitor all Power servers connected to the HMC and their
respective LPARs. Install LPAR2RRD on an LPAR and configure it in such a way that it
communicates with the HMC using password-less authentication.

Figure 5-12 on page 269 shows the LPAR2RRD monitoring features list and history details.

Tip: LPAR2RRD and the detailed installation and configuration of the tool are available at:

http://lpar2rrd.com/
268 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 5-12 lpar2rrd - monitoring features

Figure 5-13 shows the processor pool graph of one of the servers connected with the HMC
that is being monitored by the LPAR2RRD tool.

Figure 5-13 lpar2rrd - Processor pool graph

Figure 5-14 on page 270 shows the LPAR’s aggregated graph for the server. Figure 5-15 on
page 270 shows an LPAR-specific processor usage graph, which shows only the last day
graphs, but the tool provides the last week, the last four weeks and the last year graphs as
well. The historical reports option provides a historical graph of certain time periods.
Figure 5-16 on page 270 shows the historical reports for the memory usage of the last two
days.
Chapter 5. Testing the environment 269

Figure 5-14 lpar2rrd - multiple partitions graph

Figure 5-15 lpar2rrd - single partition graph

Figure 5-16 lpar2rrd - memory statistics of the past two days
270 IBM Power Systems Performance Guide: Implementing and Optimizing

The lpar2rrd tool uses the native HMC tool lslparutil to capture data for analysis. As an
alternate, the command can also be used from the HMC to list the utilization data. But to
visualize the utilization results in graphic form, LPAR2RRD would be a preferred method.

5.9 VIOS performance advisor tool and the part command

In VIOS 2.2.2.0 and later, the VIOS performance advisor tool has been imbedded into the
VIOS code. The VIOS performance advisor tool summarizes the health of a given VIOS; even
where a pair exists, they are handled individually. The advisor can identify bottlenecks and
provide recommendations by polling key performance metrics and providing a report in an
XML format.

The performance analysis and reporting tool (part) is included in the VIOS restricted shell,
and can be executed in two different modes:

� Monitoring mode - The part tool is executed for a period of time between 10 and 60
minutes. This collects the data for the period of time it is run for, at the point of time that
you run it.

� Post processing mode - The part tool is executed against a previously run nmon
recording.

The final report, inclusive of all required files to view the report, is combined into a .tar file that
can be downloaded and extracted into your PC.

The processor overhead of running the tool on a VIOS is the same as that of collecting nmon
data, and the memory footprint is kept to a minimum.

5.9.1 Running the VIOS performance advisor in monitoring mode

Example 5-77 demonstrates running the VIOS performance advisor in monitoring mode for a
period of 10 minutes.

Example 5-77 Running the VIOS performance advisor in monitoring mode

$ part -i 10
part: Reports are successfully generated in p24n27_120928_13_34_38.tar
$ pwd
/home/padmin
$ ls /home/padmin/p24n27_120928_13_34_38.tar
/home/padmin/p24n27_120928_13_34_38.tar
$

The tar file p24n27_120928_13_34_38.tar is now ready to be copied to your PC, extracted, and
viewed.

5.9.2 Running the VIOS performance advisor in post processing mode

Running the VIOS performance advisor in post processing mode requires that the VIOS is
already collecting nmon recordings. To configure the VIOS to capture nmon recordings, first
create a logical volume and file system, as shown in Example 5-78 on page 272.

Depending on how long you want to store the nmon recordings and how many devices are
attached to your VIOS, you may need a larger file system (Example 5-78 on page 272).
Chapter 5. Testing the environment 271

Example 5-78 Create a jfs2 file system for nmon recordings

$ oem_setup_env
mklv -y nmon_lv -t jfs2 rootvg 1 hdisk0
nmon_lv
crfs -v jfs2 -d nmon_lv -m /home/padmin/nmon -a logname=INLINE -A yes
File system created successfully.
64304 kilobytes total disk space.
New File System size is 131072
chfs -a size=5G /home/padmin/nmon
Filesystem size changed to 10485760
Inlinelog size changed to 20 MB.
mount /home/padmin/nmon
df -g /home/padmin/nmon
Filesystem GB blocks Free %Used Iused %Iused Mounted on
/dev/nmon_lv 5.00 4.98 1% 4 1% /home/padmin/nmon
exit
$

Once the file system is created, the next step is to edit the root crontab. Example 5-79
demonstrates how to do this.

Example 5-79 How to edit the root crontab on a Virtual I/O server

$ oem_setup_env
crontab -e

Example 5-80 shows two sample crontab entries. One entry is to record daily nmon statistics,
while the other entry is to remove the nmon recordings after 60 days. Depending on how long
you require nmon recordings to be stored, you may need to have a crontab entry to remove
them after a different period of time. You need to manually insert entries into your root
crontab.

Example 5-80 Sample crontab to capture nmon recordings and remove them after 60 days

Start NMON Recording
00 00 * * * /usr/bin/nmon -dfOPt -^ -m /home/padmin/nmon
Remove NMON Recordings older than 60 Days
01 00 * * * /usr/bin/find /home/padmin/nmon -name "*.nmon" -type f -mtime +60 !
-name "*hardened*" |xargs -n1 /bin/rm -f

Example 5-81 demonstrates how to process an existing nmon recording using the part tool.
This consists of locating an nmon recording in /home/padmin/nmon, where you are storing
them, and running the part tool against it. The resulting tar file can be copied to your PC,
extracted, and opened with a web browser.

Example 5-81 Processing an existing nmon recording

$ part -f /home/padmin/nmon/p24n27_120930_0000.nmon
part: Reports are successfully generated in p24n27_120930_0000.tar
$

The tar file is now ready to be copied to your PC, extracted and viewed.
272 IBM Power Systems Performance Guide: Implementing and Optimizing

5.9.3 Viewing the report

Once you have the tar file copied to your PC, extract the contents and open the file
vios_advisor_report.xml to view the report.

Once it is open, you see a number of sections, including a summary of the system
configuration, processor configuration and usage, memory configuration and usage, as well
as I/O device configuration and usage.

Figure 5-17 shows the system configuration section of the VIOS performance advisor.

Figure 5-17 System configuration summary

Figure 5-18 shows the processor summary from the report. You can click any of the sections
to retrieve an explanation of what the VIOS advisor is telling you, why it is important, and how
to modify if there are problems detected.

Figure 5-18 Processor summary from the VIOS performance advisor

Figure 5-19 on page 274 shows the memory component of the VIOS Advisor report. If the
VIOS performance advisor detects that more memory is to be added to the VIOS partition, it
suggests the optimal amount of memory.
Chapter 5. Testing the environment 273

Figure 5-19 Memory summary

Figure 5-20 shows the disk and I/O summary. This shows the average amount of I/O and the
block size being processed by the VIOS. It shows the amount of FC Adapters and their
utilization.

Figure 5-20 I/O and disk summary

If you click on the icon to the right of any item observed by the VIOS performance advisor, it
provides a window, as shown in Figure 5-21 on page 275. This gives a more detailed
description of what observation the VIOS performance advisor has made. The example
shown in the figure shows an FC adapter that is unused, and the suggestion is to ensure that
I/O is balanced across the available adapters. In an NPIV scenario, it could be that there are
no LPARs mapped yet to this particular port.

Note: If the FC port speed is not optimal, it is possible that the FC adapter is attached to a
SAN fabric switch that is either not capable of the speed of the FC adapter, or the switch
ports are not configured correctly.
274 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 5-21 Example of VIOS performance advisor recommendation

5.10 Workload management

One of the reasons why many systems have performance problems is because of poor
workload distribution.

All planned activities can be better managed by following certain workload management
techniques. This also helps to avoid bottleneck situations. There is work that can wait for a
while. For instance, a report that needs to be generated for the next morning can be started at
5 p.m. or at 5 a.m. The difference is that during night the processor is probably idle. The
critical data backup can also be initiated during the night to better manage the resources.

This type of workload management is provided by many different third-party software
vendors, but the operating system itself has tools that may help before investing in such tools.

The cron daemon can be used to organize all planned workloads by running at different
times. Use the at command to take advantage of the capability or set up a crontab file.

Using job queue is another way of workload management where the programs or procedures
can be executed sequentially.

Submitting an environment for performance analysis is most of the time a complex task. It
usually requires a good knowledge of the workloads running, system capacity, technologies
available, and involves a lot of tuning and testing.

To understand the limits of the components of the environment is crucial for establishing
targets and setting expectations.

Example 5-82 - qdaemon - configuration example

* BATCH queue for running shell scripts
bsh:
 device = bshdev
Chapter 5. Testing the environment 275

 discipline = fcfs

bshdev:
 backend = /usr/bin/bsh

In Example 5-82 on page 275, we define a bsh queue that uses /usr/bin/bsh as backend.
The backend is the program that is called by qdaemon.

The queue can be reduced by putting the jobs in the queue during the day and starting the
queue up during the night using the commands shown in Example 5-83.

Example 5-83 - qdaemon - usage example

To bring the Queue down

qadm -D bsh

To put the jobs in queue

qprt -P bsh script1
qprt -P bsh script2
qprt -P bsh script3

To start the queue during night

qadm -U bsh

When starting the queue during the night, the jobs will be executed sequentially.

Example 5-84 illustrates the use of queues to run a simple script with different behavior
depending on the status of its control file. At first, ensure that the queue is down and some
jobs are added to the queue. Next, the qchk output shows that our queue is down and has
four jobs queued. When the queue is brought up, the jobs will run, all in sequence, sending
output data to a log file. At last, with the queue still up, the job is submitted two more times.
Check the timestamps of the log output.

Example 5-84 qdaemon - using the queue daemon to manage jobs

qadm -D bsh
qprt -P bsh /tests/job.sh
qprt -P bsh /tests/job.sh
qprt -P bsh /tests/job.sh
qprt -P bsh /tests/job.sh
qchk -P bsh
Queue Dev Status Job Files User PP % Blks Cp Rnk
------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---
bsh bshde DOWN
 QUEUED 20 /tests/job.sh root 1 1 1
 QUEUED 21 /tests/job.sh root 1 1 2
 QUEUED 22 /tests/job.sh root 1 1 3
 QUEUED 23 /tests/job.sh root 1 1 4
qadm -U bsh
qchk -P bsh
Queue Dev Status Job Files User PP % Blks Cp Rnk
276 IBM Power Systems Performance Guide: Implementing and Optimizing

------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---
bsh bshde READY
cat /tmp/jobctl.log
[23/Oct/2012] - Phase: [prepare]
[23/Oct/2012] - Phase: [start]
[23/Oct/2012-18:24:49] - Phase: [finish]
Error
[23/Oct/2012-18:24:49] - Phase: []
[23/Oct/2012-18:24:49] - Phase: [prepare]
[23/Oct/2012-18:24:49] - Phase: [start]
[23/Oct/2012-18:27:38] - Creating reports.
[23/Oct/2012-18:27:38] - Error
[23/Oct/2012-18:27:38] - Preparing data.
[23/Oct/2012-18:27:38] - Processing data.
qchk -P bsh
Queue Dev Status Job Files User PP % Blks Cp Rnk
------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---
bsh bshde READY
qprt -P bsh /tests/job.sh
qprt -P bsh /tests/job.sh
tail -3 /tmp/jobctl.log
tail -3 /tmp/jobctl.log
[23/Oct/2012-18:27:38] - Processing data.
[23/Oct/2012-18:28:03] - Creating reports.
[23/Oct/2012-18:33:38] - Error

Using this queueing technique to manage the workload can be useful to prevent some tasks
running in parallel. For instance, it may be desired that the backups start only after all nightly
reports are created. So instead of scheduling the reports and backup jobs with the cron
daemon, you can use the queue approach and schedule only the queue startup within the
crontab.
Chapter 5. Testing the environment 277

278 IBM Power Systems Performance Guide: Implementing and Optimizing

Chapter 6. Application optimization

In this chapter we discuss application optimization, including the following topics:

� Optimizing applications with AIX features

� Application side tuning

� IBM Java Support Assistant

6

© Copyright IBM Corp. 2013. All rights reserved. 279

6.1 Optimizing applications with AIX features

Even if you have followed all the advice in 2.2.4, “Optimizing the LPAR resource placement”
on page 18, you can still have an LPAR composed by some local and remote memory for
several reasons:

� Your LPAR placement is optimized, but your LPAR is too big to be contained within a single
chip or node.

� Your LPAR is not critical (or the last created) and has to run on the free resources available
but scattered in the system.

Fortunately, AIX can help to limit the effect of the NUMA architecture (2.2.1, “Power Systems
and NUMA effect” on page 10).

This section provides some explanations about:

� The default behavior of the AIX scheduler with POWER7 architecture.

� How AIX can help to localize a process to a specific set of resources (RSET).

� How AIX can help to automatically tune your system for an application (Dynamic System
Optimizer).

6.1.1 Improving application memory affinity with AIX RSETs

The AIX operating system has been optimized to run on the POWER7 architecture. AIX 6.1
TL5 and AIX 7.1 are aware of the system topology at boot time, and dynamically aware since
AIX 6.1 TL8 or AIX 7.1 TL2. This topology information can be visualized with the lssrad
command (Example 6-1).

Example 6-1 lssrad output example

{D-PW2k2-lpar1:root}/ # lssrad -av
REF1 SRAD MEM CPU
0
 0 15662.56 0-15
1
 1 15857.19 16-31

The AIX scheduler uses the Scheduler Resource Allocation Domain Identifier (SRADID) to try
to redispatch the thread on a core as close as possible to its previous location in this order:

1. Redispatch the thread on the same core to keep L2, L3, and memory data.

2. Redispatch the thread on another core but in the same POWER7 chip. Some data can be
retrieved through a remote L3 cache, and memory affinity is preserved.

3. Redispatch the thread on another core, in another POWER7 chip but in the same node. In
this case, memory affinity is lost and data has to be retrieved with a remote (near) memory
access.

4. Redispatch the thread on another core, in another POWER7 chip and in another node (for
Power 770 or above only). In this case, memory affinity is lost and data has to be retrieved
with a distant (far) memory access.
280 IBM Power Systems Performance Guide: Implementing and Optimizing

In AIX 6.1 TL5 and later and AIX 7.1, the behavior is the same as in a virtualized Shared
Processor Logical Partition (SPLPAR) if the restricted vmo parameter
enhanced_memory_affinity is set to 1 (default value). Refer to Example 6-2.

Example 6-2 Checking vmo parameter enhanced_memory_affinity

{D-PW2k2-lpar1:root}/ # vmo -FL enhanced_memory_affinity
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
enhanced_memory_affinity 1 1 1 0 1 boolean B
--

Memory affinity
Beside the enhanced_memory_affinity vmo parameter, AIX 6.1 TL5 and AIX 7.1 bring another
restricted parameter called enhanced_affinity_private. Refer to Example 6-3.

Example 6-3 Checking the vmo parameter enhanced_affinity_private

{D-PW2k2-lpar1:root}/ # vmo -FL enhanced_affinity_private
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
enhanced_affinity_private 40 40 40 0 100 numeric D
--

This parameter helps to get more memory local to the chip where the application is running. It
is a percentage. By default it is set to 40 (for AIX 6.1 TL6 and beyond, only 20 for AIX 6.1 TL5)
which means 40% of the memory allocated by a process is localized and the other 60% is
equally spread across all the memory.

The configuration described in Example 6-1 has two SRADID (two POWER7 chips with
memory). If a process starts in a core of chip1 and allocates some memory, 40% will be
allocated next to chip1, and the 60% left spread equally across SRADID 0 and 1. So the final
allocation is 40% + 30% next to chip1 and 30% next to chip2.

Note: A few lines of advice:

� enhanced_affinity_private is a restricted tunable parameter and must not be
changed unless recommended by IBM Support.

� This is an advisory option, not compulsory. For large memory allocation, the system
might need to balance the memory allocation between different vmpools. In such
cases, the locality percentage cannot be ensured. However, you are still able to set
enhanced_affinity_vmpool_limit=-1 to disable the balancing.

� Shared memory is not impacted by the enhanced_affinity_private parameter. This
kind of memory allocation is controlled by memplace_shm_named and
memplace_shm_anonymous.
Chapter 6. Application optimization 281

You can force a process to allocate all its memory next to the chip where it is running without
changing the vmo tunable enhanced_affinity_private. This can be done by exporting the
variable MEMORY_AFFINITY with a value set to MCM before starting your process
(Example 6-4).

Example 6-4 Forcing the start_program memory to be allocated locally

{D-PW2k2-lpar1:root}/ #export MEMORY_AFFINITY=MCM
{D-PW2k2-lpar1:root}/ #./start_program.ksh

But, even if the AIX scheduler tries to redispatch a thread on the same core, there is no
guarantee, and some threads can migrate to another core or chip during its runtime
(Figure 6-1).

You can monitor the threads’ migration with an AIX command such as topas -M (Figure 6-2
on page 283).

Figure 6-1 Distant/remote access with MEMORY_AFFINITY=MCM

topas -M (Figure 6-2 on page 283) gives you the following output divided into two parts:

� The first part gives you the processor and memory topology (lssrad). It also gives the
amount of memory usage for each memory domain.

� The second part gives you the amount of threads dispatched per logical processor with a
repartition Local, Near, and Far.

– LocalDisp% is the percentage of threads redispatched from the same chip.
– NearDisp% is the percentage of threads redispatched from another chip in the same

node.
– FarDisp% is the percentage of threads redispatched from another chip from another

node.

1. In this example, two processes are
started with MEMORY_AFFINITY=MCM
exported.

2. All the memory of each process is well
localized, but during the workload, some
threads are migrated to another chip.

3. This can result in some distant or
remote access.
282 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 6-2 topas -M output

So, exporting the variable MEMORY_AFFINITY= MCM is not enough to maintain a good
processor and memory affinity. You need to be sure that threads will stay in the domain where
their memory is located and avoid migration to another domain. To do this, you can use the
AIX Resource Set (RSET).

The AIX RSET enables system administrators to define and name a group of resources such
as a logical processor. This service comes with its own set of commands, as described in
Table 6-1.

Table 6-1 RSET set of AIX commands

Example 6-5 Adding and checking NUMA control capabilities of a user

{D-PW2k2-lpar1:root}/ # chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE bruce
{D-PW2k2-lpar1:root}/ # lsuser -a capabilities bruce

mkrseta

a. Refer to AIX 7.1 Difference Guide, SG24-7910 for more details.

Create and name an RSET.

rmrseta Delete the RSET.

lsrseta List available RSETs.

execrseta Execute a process inside an RSET.

attachrseta Place a process inside an RSET after its execution.

detachrseta Detach a process from an RSET.

Note: To be able to use the RSET commands, a non-root user needs to have the following
capabilities: CAP_NUMA_ATTACH,CAP_PROPAGATE (Example 6-5).

chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE <username>
Chapter 6. Application optimization 283

bruce capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE

A root or a non-root user with NUMA capabilities can create an RSET, and execute a program
within this RSET with the mkrest and execrset commands, as shown in Example 6-6 to
Example 6-8.

Example 6-6 Creating RSET named test/0 with processor 0 to 15

{D-PW2k2-lpar1:root}/ #mkrset -c 0-15 test/0
1480-353 rset test/0 created

� Execute a program in the RSET test/0 (Example 6-7)

{D-PW2k2-lpar1:root}/ #execrset test/0 -e ./start_program.ksh

Example 6-7 Checking RSET defined in a system

D-PW2k2-lpar1:root}/ #lsrset -av
T Name Owner Group Mode CPU Memory
...(lines omitted)...
a test/0 root system rwr-r- 16 0
 CPU: 0-15
 MEM: <empty>

Example 6-8 Executing “start_progrm.ksh” within test/0 RSET

{D-PW2k2-lpar1:root}/ #execrset test/0 -e ./start_program.ksh

When a process is attached to an RSET, it can only run on the logical processor that
composed this RSET. It is like the bindprocessor command, but RSET has the advantage to
bind a process and its children to a group of logical processors that allow us to:

� Bind a process to a core and let AIX manage the SMT thread as usual. This creates an
RSET with the four logical processors (if SMT4) and runs the process inside the RSET
with execrset.

� Bind a process to all the cores of a node for a very large LPAR. This can limit the number
of distant memory accesses.

Let us continue the example illustrated by Figure 6-1 on page 282. We have a system with
two chips and two processes. We create two RSETs based on the information given by the
lssrad -av command.
284 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 6-3 RESETs + MEMORY_AFFINITY=MCM configuration

To really take advantage of RSET + MEMORY_AFFINITY tuning, an application must be
“Multi-instances and share-nothing.” This means that the application can be divided into
several independent instances with their own “private” memory.

Good candidates: Multi-instances Java applications, DB2 DPF, Informix® XDS.

Bad candidates: DB2 UDB, Informix IDS, all big application single instance multiprocesses
and large shared memory.

Testing RSET and MEMORY_AFFINITY improvement on a memory-sensitive
application

To run this test, we wrote a small C program that searched a specific pattern into memory.
This program is named latency; a full description can be found in ““latency” test for RSET,
ASO and DSO demo program illustration” on page 347.

The system used for this test was a POWER 780 MHB, four drawers, 64 cores, firmware
AM730_095 with one LPAR, 16 cores and 50 GB of memory, AIX 7.1 TL1 SP4. Refer to
Example 6-9.

Example 6-9 Affinity test LPAR: lssrad output

{D-PW2k2-lpar1:root}/ # lssrad -av

Note: Unlike enhanced_affinity_private, setting MEMORY_AFFINITY=MCM will cause
the allocation of shared memory to be local too.

However, the vmo parameter enhanced_affinity_vmpool_limit still applies for
MEMORY_AFFINITY=MCM. Thus some memory might be allocated in other vmpools in
case of large memory allocation, if local allocation causes vmpool imbalance that exceeds
the threshold set by enhanced_affinity_vmpool_limit.

If you have multiple RSETs accessing the same shared memory regions, setting
MEMORY_AFFINITY=MCM@SHM=RR should be a better choice than
MEMORY_AFFINITY=MCM.

With this RSET configuration, each
process and its threads are bound to one
chip.

Because on the exported variable
MEMORY_AFFINITY=MCM, all the
memory will be allocated near to the chip
where the correspondent threads are
running.

This RSET configuration helps to keep
the threads running on their HOME chip,
which maintains the memory affinity near
100%.
Chapter 6. Application optimization 285

REF1 SRAD MEM CPU
0
 0 24624.25 0-31
1
 1 24787.69 32-63

On this LPAR, we ran two tests:

� For the first test (test A), we started two processes searching patterns in their own private
16 GB of memory. Each process has 30 threads. We let these processes run for two hours
without any memory affinity tuning (Figure 6-4). Processor usage of the LPAR was around
100% during the test. Refer to Example 6-10

Figure 6-4 Two processes working without affinity tuning

Example 6-10 Starting test A without RSET and MEMORY_AFFINITY

{D-PW2k2-lpar1:root}/ # ./proc1/latency4 16384 1024 30 7200 &
[3] 18153958
{D-PW2k2-lpar1:root}/ # ./proc2/latency4 16384 1024 30 7200 &
[4] 5701778

� For the second test (test B), we restarted two latency programs, but with
MEMORY_AFFINITY=MCM and RSET configuration as shown in Example 6-13.

– Before creating the RSETs, we checked the processor and memory topology of our
LPAR with lssrad (Example 6-9).

– The lssrad output shows two chips with eight cores each (SMT4). We created two
RSETs, one called proc/1 with logical processors 0-31 and the other proc/2 with 32-63
as described in Example 6-11.

Example 6-11 Creating AIX RSET for test B

{D-PW2k2-lpar1:root}/ #mkrset -c 0-31 proc/1
1480-353 rset proc/1 created
{D-PW2k2-lpar1:root}/ #mkrset -c 31-63 proc/2
1480-353 rset proc/2 created

Before switching to the next step, we checked our RSET configuration with the lsrset
command, as shown in Example 6-12.
286 IBM Power Systems Performance Guide: Implementing and Optimizing

Example 6-12 Checking AIX RSET configuration

{D-PW2k2-lpar1:root}/ # lsrset -av
T Name Owner Group Mode CPU Memory
...(lines omitted)...
a proc/1 root system rwr-r- 32 0
 CPU: 0-31
 MEM: <empty>

a proc/2 root system rwr-r- 32 0
 CPU: 32-63
 MEM: <empty>

– Now, our AIX RSET configuration was done and we could export
MEMORY_AFFINITY=MCM and start our two processes in the created RSETs
(Example 6-13).

Example 6-13 Starting two latency programs in RSETs with MEMORY_AFFINITY=MCM

{D-PW2k2-lpar1:root}/ #export MEMORY_AFFINITY=MCM
{D-PW2k2-lpar1:root}/ #execrset proc/1 -e ./proc1/latency4 16384 1024 30 7200&
[1] 14614922
{D-PW2k2-lpar1:root}/ #execrset proc/2 -e ./proc2/latency4 16384 1024 30 7200&
[2] 14483742

– We checked that the two latency processes were well bound to the desired RSET with
the lsrset command, as shown in Example 6-14.

Example 6-14 Checking process RSET binding with lsrset

{D-PW2k2-lpar1:root}/ # lsrset -vp 14614922
Effective rset: 32 CPUs, 0 Memory
 CPU: 0-31
 MEM: <empty>

{D-PW2k2-lpar1:root}/ # lsrset -vp 14483742
Effective rset: 32 CPUs, 0 Memory
 CPU: 32-63
 MEM: <empty>
Chapter 6. Application optimization 287

Test results
At the end of the test, we added the number of transactions generated by each process.
Table 6-2 shows that test B with RSET and MEMORY_AFFIMITY=MCM generates two times
more transactions than test A.

Table 6-2 RSETs vs. “no tuning” test results

Tuning memory affinity can really improve performance for memory-sensitive applications.
But it can sometimes be difficult to implement. You also need to know how your application is
working, and how your system is designed to be able to size your RSET. You also need to
have an application that can be divided into multiple instances with no shared memory
between the instances. And when everything is done, you need to continuously monitor your
system to adapt your RSET sizing.

To conclude, “manual RSET” can be difficult to set up and maintain for some workloads. If you
are in AIX 6.1 TL8, AIX 7.1 TL1 or later, Dynamic System Optimizer can help you do this job
for you.

6.1.2 IBM AIX Dynamic System Optimizer

To accommodate today’s complex workloads, AIX introduced a new technology called
Dynamic System Optimizer (DSO). DSO can help to address system optimization in an
autonomous fashion and tune the system dynamically and automatically.

It is a framework that currently consists of the Active System Optimizer (ASO) daemon and
four types of optimization strategies.

Active System Optimizer daemon
ASO is a user-level daemon that keeps monitoring system resource utilization and tunes the
allocation of system resources based on the optimization strategies. It was originally
introduced in AIX 7.1 TL1 and has since been added to AIX 6.1 TL08.

Optimization strategies
This section describes the optimization strategies:

� Cache Affinity Optimization

ASO analyzes the cache access patterns based on information from the kernel and the
PMU to identify potential improvements in Cache Affinity by moving threads of workloads
closer together.

Test name Transactions Memory localitya

a. Measure with hpmstat “The hpmstat and hpmcount utilities” on page 334.

Latency

Test A (no tuning) 65 402 40% 350 ns

Test B (RSET) 182 291 100% 170 ns

Note: The test we used to illustrate this RSET section is only waiting for memory, not for
disk or network I/O. This is why we could achieve a 2x improvement by tuning the memory
affinity.

Do not expect such results in your production environment. Most commercial applications
wait for memory, but also for disk and network, which are much slower than memory.
However, some improvement between 20% to 40% can usually be achieved.
288 IBM Power Systems Performance Guide: Implementing and Optimizing

� Memory Affinity Optimization

If ASO finds that the workload benefits from moving processes’ private memory closer to
the current affinity domain, then hot pages are identified and migrated into local.

� Large Page Optimization

ASO promotes heavily used regions of memory to 16 MB pages to reduce the number of
TLB/ERAT for such workloads that use large chunks of data.

� Data Stream Prefetch Optimization

According to information collected from the kernel and the PMU, ASO dynamically
configures the Data Stream Control Register (DSCR) setting to speed up hardware data
stream fetching.

Once activated, ASO runs without interaction in the background. Complex, multiple-thread,
long-running applications with stable processor utilization will be eligible workloads for ASO
tuning. For more details about eligible workloads and more detailed descriptions of the four
optimizations, refer to POWER7 Optimization and Tuning Guide, SG248079.

How to start the ASO daemon
Before starting ASO, check to make sure ASO can be activated on your system. To verify the
system level, refer to Example 6-15.

Example 6-15 Command to verify the AIX level

oslevel -s
7100-02-00-0000

Example 6-16 shows how to verify the ASO and optional DSO fileset.

Example 6-16 Command to verify fileset

#lslpp -l|grep aso
 bos.aso 7.1.2.0 COMMITTED Active System Optimizer
 dso.aso 1.1.0.0 COMMITTED IBM AIX Dynamic System

Example 6-17 shows how to verify that your LPAR is running in POWER7 mode, because
only LPARs hosted on POWER7 or later hardware are supported.

Example 6-17 Command to verify processor mode

#lsconf | grep ^Processor
Processor Type: PowerPC_POWER7

Note: By default, ASO provides Cache and Memory Affinity Optimization. To enable Large
Page and Data Stream Prefetch Optimization, acquire and install the dso.aso package,
which prereqs AIX7.1 TL2 SP1 or AIX6.1 TL8 SP1.

DSO (5765-PWO) can be ordered as a stand-alone program or as part of the AIX
Enterprise Edition 7.1 (5765-G99) and AIX Enterprise Edition 6.1 (5765-AEZ) bundled
offerings.

Clients that currently are licensed for either of these offerings and have a current SWMA
license for those products are entitled to download DSO from the Entitled Software
Support site:

https://www.ibm.com/servers/eserver/ess/OpenServlet.wss
Chapter 6. Application optimization 289

https://www.ibm.com/servers/eserver/ess/OpenServlet.wss

Processor Implementation Mode: POWER 7
Processor Version: PV_7_Compat
Processor Clock Speed: 3300 MHz

Use the command shown in Example 6-18 to start ASO.

Example 6-18 Command to start ASO

#asoo -o aso_active=1
Setting aso_active to 1
#startsrc -s aso
0513-059 The aso Subsystem has been started. Subsystem PID is 3080470.
#

How ASO impacts your application
Once ASO starts, it keeps monitoring the system utilization every minute. When a workload is
running, ASO detects the process and applies each kind of optimization strategy in turn to the
workload to determine the best tuning approach. If the performance results are not as
expected, ASO reverses its actions immediately.

Now let us try to restart the same workload and environment as in 6.1.1, “Improving
application memory affinity with AIX RSETs” on page 280. After starting the two “latency”
processes without any specific tuning (Figure 6-4 on page 286), ASO starts to optimize it. At
the end of the test, we compared results achieved with ASO and the manual RSET tuning.

Test results
The result is described in Figure 6-5. The results achieved by ASO are closed to manual
RSET (+8% for manual RSET only).

Figure 6-5 Manual RSET vs. ASO 2-hour “latency” test result

Let us have a closer look at the test by analyzing the transaction rate all along the test and the
ASO logs available in the /var/log/aso/ directory (Figure 6-6 on page 291).
290 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 6-6 TPS evolution graph during 2-hour “latency” test

� Cache Affinity Optimization - After two minutes analyzing the loads of our two processes,
ASO decided to create two RSETs with one chip per RSET, and bind each of the
processes to one different RSET (Example 6-19). By always using the same chip, each
thread of a process benefits from a better L3 cache affinity. This allows the TPS to go from
8 to 18 TPS.

Example 6-19 Cache Affinity Optimization extracted from /var/log.aso/aso_process.log

...(lines omitted)...
aso:info aso[4784168]: [SC][6029526] Considering for optimisation (cmd='latency4',
utilisation=7.21, pref=0; attaching StabilityMonitorBasic)
aso:info aso[4784168]: [SC][5177674] Considering for optimisation (cmd='latency4',
utilisation=5.89, pref=0; attaching StabilityMonitorBasic)
aso:info aso[4784168]: [perf_info] system utilisation 15.28; total process load
59.82
aso:info aso[4784168]: attached(6029526): cores=8, firstCpu= 32, srads={1}
aso:info aso[4784168]: [WP][6029526] Placing non-FP (norm load 8.00) on 8.00 node
aso:info aso[4784168]: attached(5177674): cores=8, firstCpu= 0, srads={0}

� After 5 minutes, ASO tries to evaluate more aggressive Cache Optimization strategies. But
no improvement was found for our workload (Example 6-20).

Example 6-20 Extract from /var/log.aso/aso_process.log

...(lines omitted)...

aso:info aso[4784168]: [SC][6029526] Considering for optimisation (cmd='latency4',
utilisation=8.63, pref=0; attaching StabilityMonitorAdvanced)
aso:info aso[4784168]: [EF][6029526] attaching strategy StabilityMonitorAdvanced
aso:info aso[4784168]: [SC][5177674] Considering for optimisation (cmd='latency4',
utilisation=6.83, pref=0; attaching StabilityMonitorAdvanced)
aso:info aso[4784168]: [EF][5177674] attaching strategy StabilityMonitorAdvanced
aso:info aso[4784168]: [perf_info] system utilisation 15.29; total process load
59.86
aso:info aso[4784168]: [SC][5177674] Considering for optimisation (cmd='latency4',
utilisation=8.25, pref=0; attaching PredictorStrategy)
Chapter 6. Application optimization 291

aso:info aso[4784168]: [EF][5177674] attaching strategy PredictorStrategy
aso:info aso[4784168]: [SC][5177674] Considering for optimisation (cmd='latency4',
utilisation=8.25, pref=0; attaching ExperimenterStrategy)
aso:info aso[4784168]: [EF][5177674] attaching strategy ExperimenterStrategy

� Memory Optimization - 20 minutes after the beginning of the test, ASO tried to optimize
the memory affinity. It detected, for each process, 30% of non-local memory and decided
to migrate 10% next to the RSET (Example 6-21). This optimization is made every five
minutes. 45 minutes after the beginning of the run, most of the memory access was local,
and TPS was comparable to manual RSET.

Example 6-21 Memory Affinity Optimization sample in aso_process.log

...(lines omitted)...
aso:info aso[4784168]: [SC][5177674] Considering for optimisation (cmd='latency4',
utilisation=6.65, pref=0; attaching MemoryAffinityStrategy)
aso:info aso[4784168]: [perf_info] system utilisation 14.64; total process load
59.87
aso:info aso[4784168]: [MEM][5177674] 70.36% local, striped local 0.00%
aso:info aso[4784168]: [MEM][5177674] 100% max affinitised, 100.00% max local
aso:info aso[4784168]: [MEM][5177674] Accumulated remote accesses: 10177107.448366
aso:info aso[4784168]: [MEM][5177674] Recommending MIGRATE to 1(10%)
20354223.081760

Comment: Attached Memory strategy to the workloads
...(lines omitted)...

aso:info aso[4784168]: [MEM][5177674] Current migration request completed
aso:info aso[4784168]: [MEM][5177674] 419876 pages moved, target 419473 (progress
100.10%)
aso:info aso[4784168]: [MEM][5177674] Sufficient progress detected, detaching
monitor.
Comment: Completed current memory migration
...(lines omitted)...

6.2 Application side tuning

We focused on applications written in C/C++ and Java this time.

6.2.1 C/C++ applications

For C/C++ applications, you can utilize the XL C/C++ compiler to optimize code during
compilation. Also, there are some other options and environment variables that can help

Note:

� Memory optimization needs to have enough free memory to perform the page
migration.

� For test purposes and to compare with RESTs manual tuning, the value of
enhanced_affinity_private was also set to 100 (instead of the default value of 40) one
minute after the beginning of the run. This forced ASO to migrate pages to reach a
memory affinity target near 100%.
292 IBM Power Systems Performance Guide: Implementing and Optimizing

maximum performance based on the application characteristics. Most of the environment
variables, including the PTHREAD tunables and MALLOCOPTIONS, can also be used to
optimize the performance for applications other than C/C++.

Compiler version
To exploit the new POWER7 features, the IBM XL C/C++ for AIX V11.1 or later version is a
must. Earlier versions of XL C, XL C/C++ only provide POWER7 tolerance. For additional
information, refer to POWER7 tolerance for IBM XL compilers at:

http://www-01.ibm.com/support/docview.wss?uid=swg21427761

At the time of writing this book, there was no specific PTF for POWER7+ exploitation in XL
C/C++ including V11.1.0.12 and V12.1.0.2. We suggest to use the POWER7 options.

Compiler options
There are numerous optimization compiler options. Here we just list the most common. For
detailed information, refer to XL C/C++ InfoCenter at:

For IBM AIX Compilers - XL C/C++ for AIX, V11.1, XL Fortran for AIX, V13.1:

http://publib.boulder.ibm.com/infocenter/comphelp/v111v131/index.jsp

For IBM AIX Compilers - XL C/C++ for AIX, V12.1, XL Fortran for AIX, V14.1

http://publib.boulder.ibm.com/infocenter/comphelp/v121v141/index.jsp

Optimization levels
This section describes the optimization levels supported:

� -O

The XL C/C++ compiler supports several levels of optimization: 0, 2, 3, 4, and 5. The
higher level of optimization is built on lower levels with more aggressive tuning options. For
example, on top of -O2 optimization, -O3 includes extra floating point optimization, minimum
high-order loop analysis and transformations (HOT), and relaxes the compilation resource
limits to compensate for better runtime performance. -O4 enables higher level HOT,
interprocedural analysis (IPA), as well as machine-dependent optimization. -O5 enables
higher level IPA on top of -O4. Refer to Table 6-3 for more detailed information.

Table 6-3 Optimization levels in xlC/C++

Optimization level Extra compiler options
implied besides the options
at lower levels

Comments

-O0 N/A Ensure your application runs
well in the default level. That is
the basis for further
optimization.

-O2/-O -qmaxmem=8192 This option is suggested for
most commercial applications.

-O3 -qnostrict
-qmaxmem=-1
-qhot=level=0

Certain semantics of the
program might be altered
slightly, especially floating point
operations. Specify -qstrict to
avoid this.
Chapter 6. Application optimization 293

However, note that there are tradeoffs between increased compile time, debugging
capability and the performance improvement gained by setting higher optimization levels.
Also, a higher level of optimization does not necessarily mean better performance. It
depends on the application characteristics. For example, -O3 might not outperform -O2 if
the workload is neither numerical nor compute intensive.

Machine-dependent optimization
Machine-dependent optimization options can instruct the compiler to generate optimal code
for a given processor or an architecture family.

� -qarch

Specifies the processor architecture for which the code (instructions) should be
generated. The default is ppc for 32-bit compilation mode or ppc64 for 64-bit compilation
mode, which means that the object code will run on any of the PowerPC® platforms that
support 32-bit or 64-bit applications, respectively.

This option could instruct the compiler to take advantage of specific Power chip
architecture and instruction set architecture (ISA). For example, to take advantage of
POWER6 and POWER7 hardware decimal floating point support (-qdfp), we should
compile with -qarch=pwr6 or above explicitly; refer to Example 6-22.

Example 6-22 Enable decimal floating point support

#xlc -qdfp -qarch=pwr6 <source_file>

Note that you should specify the oldest platform that your application will run on if you
explicitly specify this option. For example, if the oldest platform for your application is
POWER5, you should specify -qarch=pwr5.

� -qtune

This option tunes instruction selection, scheduling, and other architecture-dependent
performance enhancements to run best on a specific hardware architecture. -qtune is
usually used together with -qarch.

You should specify the platform which you application is most likely to run on. Then the
compiler will generate instruction sequences with the best performance for that platform.
For example, if the oldest platform for you application is POWER5, and the most common

-O4 -qhot=level=1
-qipa
-qarch=auto
-qtune=auto
-qcache=auto

IPA (-qipa) is included in -O4,
which might increase
compilation time significantly,
especially at the link step.
Use make -j[Jobs] to start
multiple compiling jobs to
circumvent such issues.

-O5 -qipa=level=2 This option enables a higher
level of IPA on top of -O4 and
requires more compilation time.

Note: For most commercial applications, we suggest a minimum level of 2 for better
performance, acceptable compiler time, and debugging capability.

Optimization level Extra compiler options
implied besides the options
at lower levels

Comments
294 IBM Power Systems Performance Guide: Implementing and Optimizing

platform is POWER7, you should specify “-qarch=pwr5 -qtune=pwr7” and the compiler will
target the POWER7 platform for best performance.

Other compiler options
Here are some other options that are frequently considered in compiler optimization.

� -qalias=ansi|noansi

When ansi is in effect, type-based aliasing is used during optimization, which restricts the
lvalues that can be safely used to access a data object. The optimizer assumes that
pointers can only point to an object of the same type or a compatible type. This suboption
has no effect unless you also specify an optimization option.

The “compatible type” rules are slightly different between C and C++, but in both some
small type differences are allowed. The C and C++ language standards provide more
detail. Here is the C99 wording in Section 6.5 Expressions:

An object shall have its stored value accessed only by an lvalue expression that has one of
the following types:

– A type compatible with the effective type of the object.

– A qualified version of a type compatible with the effective type of the object.

– A type that is the signed or unsigned type corresponding to the effective type of the
object.

– A type that is the signed or unsigned type corresponding to a qualified version of the
effective type of the object.

– An aggregate or union type that includes one of the aforementioned types among its
members (including, recursively, a member of a subaggregate or contained union).

– A character type.

The C++ rules are similar but expanded to deal with base and derived classes. Refer to “3.10
Lvalues and rvalues” in C++ 2003 standard (ISO/IEC 14882).

When noansi is in effect, the optimizer makes worst-case aliasing assumptions. It assumes
that a pointer of a given type can point to an external object or any object whose address is
already taken, regardless of type.

Example 6-23 gives a common source code example that violates the ANSI aliasing rule, and
encounters problems under a higher level of optimization. The example also gives an
approach on how to identify the aliasing problem using -qinfo=als, and how to work around
it using -qalias=noansi.

Example 6-23 Dealing with the ANSI aliasing rule in compiler optimization

cat test.c
#include <stdio.h>
struct refhead {
int refid;
};

Tip: -qarch=auto and -qtune=auto are implied using high-level optimization -O4 and
-O5. These options assume the execution environment is the same with the compiling
machine, and optimize your application based on that assumption. You should specify
correct values of -qarch and -qtune explicitly to override the default, if the processor
architecture of your compiling machine is not identical to the execution environment.
Chapter 6. Application optimization 295

struct pagehead {
char pageid;
char pageindex;
char paddings[2];
};

int main(int argc, char* argv[])
{
 int myid ;
 struct pagehead* optr;
 struct refhead* nptr;
 nptr = (struct refhead *) &myid; /*violate ansi aliasing rule*/
 nptr->refid = 0;

 optr = (struct pagehead*) &myid; /*violate ansi aliasing rule*/
 optr->pageid = 0x12;
 optr->pageindex = 0x34;

 printf("nptr->id = %x\n", nptr->refid);
 printf("optr->id = %x %x\n", optr->pageid, optr->pageindex);
 return 0;
}
xlc test.c
./a.out
nptr->id = 12340000
optr->id = 12 34
xlc test.c -O4
./a.out
nptr->id = 0 <= incorrect result, should be 12340000.
optr->id = 12 34
xlc test.c -qinfo=als
"test.c", line 18.7: 1506-1393 (I) Dereference may not conform to the current
aliasing rules.
"test.c", line 18.7: 1506-1394 (I) The dereferenced expression has type "struct
refhead". "nptr" may point to "myid" which has incompatible type "int".
"test.c", line 18.7: 1506-1395 (I) Check pointer assignment at line 17 column 8 of
test.c.
"test.c", line 21.7: 1506-1393 (I) Dereference may not conform to the current
aliasing rules.
"test.c", line 21.7: 1506-1394 (I) The dereferenced expression has type "struct
pagehead". "optr" may point to "myid" which has incompatible type "int".
"test.c", line 21.7: 1506-1395 (I) Check pointer assignment at line 20 column 8 of
test.c.
xlc test.c -O4 -qalias=noansi
./a.out
nptr->id = 12340000 <= correct!
optr->id = 12 34
296 IBM Power Systems Performance Guide: Implementing and Optimizing

� -qinline

This option, instead of generating calls to functions, attempts to inline these functions at
compilation time to reduce function call overhead. We suggest you use -qinline together
with a minimum optimization level of -O2.

The inlining is usually important for C++ applications. In XL C/C++ V11.1 and V12.1, you
can use -qinline=level=<number> to control the aggressiveness of inlining. The number
must be a positive integer between 0 and 10 inclusive; the default is 5. Larger value
implies more aggressive inlining. For example, -qinline=level=10 means the most
aggressive inlining.

� -s

This option strips the symbol table, line number information, and relocation information
from the output file, which has the same effect as the strip command. Usually, large
applications can get some performance benefit from this option. Note that it should not be
used with debugging options such as -g.

� -qlistfmt

This feature is provided since XL C/C++ V11.1 and enhanced in XL C/C++ V12.1. It is
aimed to assist user finding optimization opportunities.

With -qlistfmt, XL compilers provide compiler transformation report information about
the optimizations that the compiler is able to perform and also which optimization
opportunities were missed. The compiler reports are available in the xml and html formats.
Example 6-24 shows an example of using the -qlistfmt option.

Example 6-24 -qlistfmt example

//comments: the sample program used in this example
cat testarg.c
#include <stdio.h>
#include <stdarg.h>
#define MACRO_TEST(start,...) myvatest(start, __VA_ARGS__);

void myvatest(int start, ...)
{
 va_list parg;
 int value;
 int cnt=0;

Tip: If you encounter aliasing problems with -O2 or higher optimization levels, consider the
following approaches rather than turning off optimization:

� Use -qalias=noansi, which is a fast workaround.

Compiling with -qalias=noansi will limit the amount of optimization the compiler can do
to the code. However, -O2 -qalias=noansi will be better than disabling optimization
altogether (-O0).

� Use -qinfo=als without optimization options to list the problem lines of code, and
correct them to comply with the ANSI aliasing rule. This might help if optimal
performance is desired for a particular area of code.

Note: You can either use the strip command or the -s option. You should not use both
because you will get an error message stating that The file was already stripped as
specified.
Chapter 6. Application optimization 297

 va_start(parg, start);
 printf("addr(start) = %p, parg = %p\n", &start, parg);
 while((value = va_arg(parg, int)) != -1)
 {
 cnt++;
 printf("the %dth argument: %d, current pointer = %p\n", cnt, value, parg);
 }

 va_end(parg);
}

inline void mytest(int arg1, int arg2, int arg3)
{
 printf("arg1 = %d, addr(arg1) = %p\n", arg1, &arg1);
 printf("arg2 = %d, addr(arg2) = %p\n", arg2, &arg2);
 printf("arg3 = %d, addr(arg3) = %p\n", arg3, &arg3);
}

int main(int argc, char* argv[])
{
 mytest(1,2,3);
 myvatest(1,2,3,4,5,6,7,8,-1);
 MACRO_TEST(1,2,3,4,5,6,7,8,9,-1);
 return 0;
}

//comments: generate the inlining reports in html format, by default a.html will
be generated during the IPA link phase.
#xlc_r -qlistfmt=html=all -O5 -qinline ./testarg.c -o testarg

From the “Inline Optimization Table” section of the -qlistfmt report, a.htm is shown in
Figure 6-7, and you can see that some of the inlining opportunities failed.

Figure 6-7 Inline Optimization Table in -qlistfmt report (missing opportunities)

Then we tried a more aggressive inlining level, as shown in Example 6-25.

Example 6-25 -qlistfmt example (more aggressive inlining)

#xlc_r -qlistfmt=html=all -O5 -qinline=level=10 ./testarg.c -o testarg

Part of the new -qlistfmt report is shown in Figure 6-8 on page 299. All the inlining attempts
succeeded in the new report.
298 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 6-8 Inline Optimization Table in -qlistfmt report (all inlining succeeded)

Debugging support in optimized programs
Higher level optimization is more sensitive to application programming errors, and is usually
difficult to debug. As a result, there are related compiler options to address the debugging
requirement in optimized programs. However, you should use them with caution because
these debugging options tend to have a negative performance impact.

� -qkeepparm

This option with -O2 or higher optimization level specifies whether procedure parameters
are stored on the stack.

A function usually stores its incoming parameters on the stack at the entry point. However,
when you compile code with optimization options enabled, the compiler might remove
these parameters from the stack if it sees an optimizing advantage in doing so. When
-qkeepparm is in effect, parameters are stored on the stack even when optimization is
enabled. This provides better debugging support, but it might negatively affect application
performance.

� -qoptdebug

In XL C/C++ V9.0 and later releases, for -O3 or higher optimization level, -g -qoptdebug is
provided for easy debugging purposes. Pseudo source files are generated under the
same directory of output object files with suffix .optdbg, and can be used with dbx for
debugging. Refer to Example 6-26 for more details.

Example 6-26 Pseudo code generation for high-level optimization

cat test.c
#include <stdio.h>
void test(void)
{
 printf("This is a test.\n");
}

void main(int argc, char* argv[])
{
 int c; /*not used, will be deleted by compile optimization*/
 test();/*will be inlined by compile optimization*/
}

/usr/vac/bin/xlc -O5 -qoptdebug -g test.c -o test
ls -lrt test*
-rw-r--r-- 1 root system 225 Oct 30 21:55 test.c
-rw-r--r-- 1 root system 147 Oct 30 21:55 test.optdbg
-rwxr-xr-x 1 root system 6185 Oct 30 21:55 test
cat test.optdbg
 7 | void main(long argc, char * argv)
 8 | {
 4 | printf("This is a test./n");
 11 | return;
Chapter 6. Application optimization 299

 } /* function */

� -g<level>

-g is extended to improve the debugging of optimized programs in XL C/C++ V12.1. Since
XL C/C++ V12.1, the debugging capability is completely supported when the -O2
optimization level is in effect, which means -O2 -g is officially accepted and enhanced.
However, when an optimization level higher than -O2 is in effect, the debugging capability
is still limited.

You can use different -g levels to balance between debugging capability and compiler
optimization. The level must be a positive integer between 0 and 9 inclusive, and the
default is 2 when -O2 -g is specified. Higher -g levels provide more complete debugging
support at the cost of runtime performance.

Profile directed feedback
This section provides details about the profile directed feedback (PDF) option.

-qpdf1, -qpdf2 - PDF is a two-stage compilation process that allows the developer to
provide the compiler with data characteristic of typical program behavior. At the first stage of
compilation, -qpdf1 is specified and special instrumentation code is inserted into the
executable to gather information about the program's execution pattern. Then the application
is run under typical scenarios to collect feedback information. At the second stage of
compilation, the -qpdf2 is specified instead of -qpdf1. Other options are unchanged. The
compiler takes feedback information and generates an optimized executable. Example 6-27
gives an example of using the PDF options.

Example 6-27 Using profile directed feedback options

//comments: instrument with -qpdf1
#/usr/vac/bin/xlc -O5 -qpdf1 test.c -o test

//comments: run "test" with typical data set. “._pdf” file will be generated by
default.
#./test

//comments: the profiling information is recorded in “._pdf”.
#ls -l ._pdf
-rwxr-Sr-- 1 root system 712 Oct 31 03:46 ._pdf

//comments: re-compile using -qpdf2 to generate the optimized binary.
#/usr/vac/bin/xlc -O5 -qpdf2 test.c -o test

Profile directed feedback is usually intended for the last few steps before application release,
after all debugging and other tunings are done.

Feedback directed program restructuring (FDPR)
FDPR® can optimize the application binary based on runtime profiling data, and the
optimization does not need the source code of the application. Here we only give a brief
introduction to the usage of FDPR. More details of the FDPR tool can be found in POWER7
and POWER7+ Optimization and Tuning Guide, SG24-8079.
300 IBM Power Systems Performance Guide: Implementing and Optimizing

The FDPR optimization process is quite similar to the PDF optimization process, and can be
used together with the PDF optimization. The PDPR optimization process also consists of
three steps, as follows:

1. Instrument the application executable. A new instrumented executable with suffix .instr will
be generated.

2. Run the instrumented executable and collect profiling data.

3. Optimize the executable using the profiled information. A new optimized executable with
suffix .fdpr will be generated.

Example 6-28 gives an example using the FDPR tool.

Example 6-28 Using FDPR tool

//comments: instrument the binary “test” using fdpr command.
fdpr -a instr test
FDPR 5.6.1.0: The fdpr tool has the potential to alter the expected
behavior of a program. The resulting program will not be
supported by IBM. The user should refer to the fdpr document
for additional information.

fdprpro (FDPR) Version 5.6.1.0 for AIX/POWER
/usr/lib/perf/fdprpro -a instr -p test --profile-file /home/bruce/test.nprof
--output-file /home/bruce/test.instr
> reading_exe ...
> adjusting_exe ...
> analyzing ...
> building_program_infrastructure ...
> building_profiling_cfg ...
> instrumentation ...
>> adding_universal_stubs ...
>> running_markers_and_instrumenters ...
>> mapping ...
>>> glue_and_alignment ...
>> writing_profile_template -> /home/bruce/test.nprof ...
> symbol_fixer ...
> updating_executable ...
> writing_executable -> /home/bruce/test.instr ...
bye.

//comments: run the instrumented executable “test.instr” under typical scenarios.
./test.instr
This is a test.

//comments: the profiling data is recorded in <executable_name>.nprof.
ls -lrt test*
-rwxr-xr-x 1 root system 24064 Oct 31 03:42 test
-rwxr-xr-x 1 root system 65190 Oct 31 04:11 test.instr
-rw-rw-rw- 1 root system 40960 Oct 31 04:12 test.nprof

//comments: Optimize the executable using the profiled information.
fdpr -a opt -O3 test
FDPR 5.6.1.0: The fdpr tool has the potential to alter the expected
behavior of a program. The resulting program will not be
supported by IBM. The user should refer to the fdpr document
for additional information.
Chapter 6. Application optimization 301

fdprpro (FDPR) Version 5.6.1.0 for AIX/POWER
/usr/lib/perf/fdprpro -a opt -p test --profile-file /home/bruce/test.nprof
--branch-folding --branch-prediction --branch-table-csect-anchor-removal
--hco-reschedule --inline-small-funcs 12 --killed-registers --load-after-store
--link-register-optimization --loop-unroll 9 --nop-removal --derat-optimization
--ptrgl-optimization --reorder-code --reorder-data --reduce-toc 0 -see 1
--selective-inline --stack-optimization --tocload-optimization
--volatile-registers-optimization --output-file /home/bruce/test.fdpr
> reading_exe ...
> adjusting_exe ...
> analyzing ...
> building_program_infrastructure ...
> building_profiling_cfg ...
> add_profiling ...
>> reading_profile ...
>> building_control_flow_transfer_profiling ...
> pre_reorder_optimizations ...
>> derat_optimization ...
>> nop_optimization ...
>> load_after_store_optimization ...
>> loop_unrolling ...
>> branch_folding_optimization ...
>> pre_cloning_high_level_optimizations ...
>> inline_optimization_phase_1 ...
>> dfa_optimizations ...
>>> flattening ...
>>> calculating_input_parameters_area_sizes ...
>> high_level_analysis ...
>> pre_inline_high_level_optimizations ...
>> inline_optimization_phase_2 ...
>> lr_optimization ...
>> bt_csect_anchor_removal_optimization ...
>> ptrglr11_optimization ...
>> high_level_optimizations ...
>> branch_folding_optimization ...
>> removing_traceback_tables ...
> reorder_and_reorder_optimizations ...
>> getting_order_and_running_fixers ...
>>> tocload_data_reordering ...
>> code_reorder_optimization ...
>> tocload_optimization ...
>> memory_access_fixer ...
>> glue_and_alignment ...
>> symbol_fixer ...
>> branch_prediction_optimization ...
> updating_executable ...
> writing_executable -> /home/bruce/test.fdpr ...
bye.

//comments: the “test.fdpr” will be generated.
ls -lrt test*
-rwxr-xr-x 1 root system 24064 Oct 31 03:42 test
-rwxr-xr-x 1 root system 65190 Oct 31 04:11 test.instr
-rw-rw-rw- 1 root system 40960 Oct 31 04:12 test.nprof
302 IBM Power Systems Performance Guide: Implementing and Optimizing

-rwxr-xr-x 1 root system 24167 Oct 31 04:12 test.fdpr

PTHREAD environment variables
The following is a list of the environment variables for POSIX threads that might impact
application performance.

� AIXTHREAD_SCOPE

Controls the contention scope. A value of P signifies process-based contention scope
(M:N). A value of S signifies system-based contention scope (1:1), which is the default in
AIX 6.1 and later releases.

If a user thread is created with the system-based contention scope, it is bound to a
dedicated kernel thread and scheduled directly by the kernel. For most cases, setting
AIXTHREAD_SCOPE=S should benefit. However, there are rare situations where setting
AIXTHREAD_SCOPE=P helps. Usually, in such cases, threads within a specific process
have lots of complicated interactions with each other.

AIXTHREAD_MUTEX_DEBUG, AIXTHREAD_COND_DEBUG, and
AIXTHREAD_RWLOCK_DEBUG

These are the debug options for mutexes, conditional variables, and read-write locks,
respectively. You can turn off the options explicitly by setting those variables to OFF for
better performance.

� AIXTHREAD_MUTEX_FAST

If the program experiences performance degradation due to heavy mutex contention, then
setting this variable to ON will force the pthread library to use an optimized mutex locking
mechanism that works only on process-private mutexes, which must be initialized using
the pthread_mutex_init routine and must be destroyed using the pthread_mutex_destroy
routine. Leaving the variable set to OFF forces the pthread library to use the default mutex
locking mechanism.

� SPINLOOPTIME=n

This variable controls the number of times the system tries to get a busy mutex or spin lock
without taking a secondary action such as calling the kernel to yield the process. This
control is intended for multiprocessor systems, where it is hoped that the lock being held
by another actively running pthread will be released. The parameter works only within
libpthreads (user threads). If locks are usually available within a short amount of time, you
may want to increase the spin time by setting this environment variable. The number of
times to retry a busy lock before yielding to another pthread is n. The default is 40 and n
must be a positive value.

� YIELDLOOPTIME=n

This variable controls the number of times the system yields the processor when trying to
acquire a busy mutex or spin lock before actually going to sleep on the lock. The processor
is yielded to another kernel thread, assuming there is another executable with sufficient
priority. This variable has been shown to be effective in complex applications, where
multiple locks are in use. The number of times to yield the processor before blocking on a
busy lock is n. The default is 0 and n must be a positive value.

� AIXTHREAD_AFFINITY

Controls the placement of pthread structures, stacks, and thread-local storage on an
enhanced affinity-enabled system.

Setting AIXTHREAD_AFFINITY=first-touch should benefit some memory-sensitive
applications.
Chapter 6. Application optimization 303

MALLOCTYPE and MALLOCOPTIONS tunables
We can use MALLOCTYPE to specify the allocation policy used by the malloc subsystem.
The most frequently used policies are the default and the watson allocation policy.

� The default allocation policy (MALLOCTYPE not set)

The default allocation policy maintains the free space in the heap as nodes in one
cartesian binary search tree in which the nodes are ordered left-to-right by address
(increasing address to the right) and top-to-bottom by length (such that no child is larger
than its parent). Tree reorganization techniques optimize access times for node location,
insertion, and deletion, and also protect against fragmentation.

4. The watson allocation policy (MALLOCTYPE=watson)

The watson allocation policy maintains the free space in the heap as nodes in two
separate red-black trees, one sorted by address, the other by size. Red-black trees
provide simpler and more efficient tree operations than the cartesian tree of the default
allocator, thus the watson allocation policy is often faster than the default.

We can use MALLOCOPTIONS to specify different options to the chosen allocation policy:
multiheap and pool are the most frequently used options for best performance, and both are
compatible with the default allocator and watson allocator.

� multiheap

By default, the system uses only one heap for all threads in the process when allocating
memory, and this tends to be a performance bottleneck for multithread applications. By
setting MALLOCOPTIONS to multiheap allows multiple heaps to be created. By default, if
you do not specify a value for multiheap, it uses 32 heaps. However, we strongly suggest
that you specify an n value, especially for 32-bit applications, to better utilize the process
address space and avoid fragmentations. The n value should depend on the concurrent
need of the application and also the hardware configuration. For example, if you have only
four worker threads, you can set the number to 4. The n value should also be proportional
to the number of cores.

� pool

Pool allocation policy is a high performance front end of the malloc subsystem for
managing objects <= 512 bytes. It can be used together with the multiheap option.

By specifying the pool allocation policy, the malloc subsystem creates a linked list of fixed
sized blocks. The first linked list contains objects of pointer size (4 bytes for 32-bit
applications, and 8 bytes for 64-bit applications); the successive linked list contains
objects pointer-size larger than the previous linked list.

The implementation of the pool allocation policy is similar to the buckets allocation policy,
but more efficient in most real scenarios.

� no_mallinfo

If you specify MALLOCOPTIONS=no_mallinfo, the information about the heap managed
by the malloc subsystem is not logged. This option is usually specified for performance
gains.

Checking the environment variables in effect
Example 6-29 shows an approach to determine which environment variables have been set
for the specific process by using the ps ewww command.

Example 6-29 The ps ewww command

ps ewww 6946928
 PID TTY STAT TIME COMMAND
304 IBM Power Systems Performance Guide: Implementing and Optimizing

 6946928 pts/0 A 0:15 ./test _=./test LANG=C LOGIN=root YIELDLOOPTIME=20
MALLOCOPTIONS=pool,multiheap:4,no_mallinfo
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/java5/jre/bin:/usr/j
ava5/bin:/usr/vac/bin:/usr/vacpp/bin AIXTHREAD_MUTEX_DEBUG=OFF
AIXTHREAD_RWLOCK_DEBUG=OFF LC__FASTMSG=true AIXTHREAD_COND_DEBUG=OFF LOGNAME=root
MAIL=/usr/spool/mail/root LOCPATH=/usr/lib/nls/loc
LDR_CNTRL=TEXTPSIZE=64K@STACKPSIZE=64K@DATAPSIZE=64K@SHMPSIZE=64K USER=root
AUTHSTATE=compat SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos AIXTHREAD_MUTEX_FAST=ON
HOME=/ SPINLOOPTIME=4000 TERM=vt100 MAILMSG=[YOU HAVE NEW MAIL]
PWD=/home/bruce/samples TZ=BEIST-8 AIXTHREAD_AFFINITY=first-touch
AIXTHREAD_SCOPE=S A__z=! LOGNAME
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

Large and medium page size support
Applications tend to benefit from large page or medium page size to help improve virtual
memory addressing efficiency. For details about this, refer to 4.2.4, “Multiple page size
support” on page 138.

6.2.2 Java applications

IBM Java has already been tuned to work on AIX. However, you might also need to adjust
some of the options to maximize the performance gain. You can refer to the following links for
Java tuning best practices on IBM Power Systems.

For Java application tuning on Power Systems, refer to the following documentation:

Java Performance on POWER7:

http://www-03.ibm.com/systems/power/hardware/whitepapers/java_perf.html

Java Tuning for Performance and IBM POWER6 Support:

http://www-03.ibm.com/systems/power/hardware/whitepapers/java_tuning.html

6.2.3 Java Performance Advisor

Based on Java tuning best practices, the Java Performance Advisor tool can provide
recommendations to improve the performance of Java applications running on AIX. Three
factors are used to determine the recommendations:

� Relative importance of the Java application

� Machine usage (test or production)

� User’s expertise level

Usage
The Java Performance Advisor tool can be started by executing jpa.pl, which is located in the
directory from which you extracted the tool package.

Syntax
jpa.pl [[-e Beginner|Intermediate|Expert] [-u Test|Production] [-i Primary|Secondary] [-o
OutputFile] pid]

Note: Currently this tool only runs on AIX version 6.1 and 7.1 with root privileges.
Chapter 6. Application optimization 305

Table 6-4 shows the Java Performance Advisor flags and arguments.

Table 6-4 Java Performance Advisor flags and arguments

Viewing the result
The result can be viewed by opening the output file from the browser. By default, the JPA
writes output to jpa_output.xml under the present working directory. The output filename can
be changed with the -o option in the command. The sample is shown in Figure 6-9 on
page 307.

Flag Arguments Description

-e Beginner Either the person running this tool is unfamiliar with this
environment and the workloads running on it or is just
starting to perform AIX administration. The
recommendations that the tool will make will be
conservative and will only include the lowest risk options,
while flagging the more aggressive options as possibilities.

Intermediate The person using this tool is knowledgeable about the
environment and being an AIX administrator.
Recommendations will be more aggressive than the
administrators in the Beginner category.

Expert The person running the tool is very knowledgeable about
the environment and being an AIX administrator. All
recommendations that the tool will make will be verified by
the administrator before the setting is changed. Thus, the
tool will be the most aggressive on making
recommendations and the administrator will make judgment
calls about each and every recommendation.

-u Test This partition is primarily a test partition, thus the
performance recommendations can be more aggressive
without affecting a production environment.

Production This partition is being used for production use, thus
down-time is not an option. The recommendations will be
less aggressive in a production environment.

-i Primary The job has paramount importance compared to the other
jobs on the system. Recommendations can be made that
could affect other jobs running on the system, if it improves
the speed.

Secondary Although this job is important, there are other jobs that have
a higher priority. Any recommendations made should have
a small chance of affecting other jobs on the system.

-d Enables debug information. This option enables JPA to run
in debug mode, which generates enough information for
troubleshooting issues with JPA.

-o OutputFile The output result file.

pid PID of the process that needs to be tuned. if no PID is
supplied, all JVMs will be shown along with their PIDs.

-h Print help message.

-v Print version.
306 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 6-9 Java Performance Advisor analysis result

Apply the tuning recommendations
You can go through the recommended setting list generated by the Java Performance Advisor
tool. For details, click the row that you are interesting in. A pop-up window shows you how to
apply the settings, as shown in Figure 6-10 on page 308.
Chapter 6. Application optimization 307

Figure 6-10 Hints from the Java Performance Advisor

6.3 IBM Java Support Assistant

IBM Java Support Assistant (ISA) software is a one stop solution for performance monitoring
of IBM Java virtual machines, and also for obtaining advisory tuning suggestions.

The ISA is in fact a collection of performance monitoring utilities for various aspects such as
JVM thread analysis, memory analysis, and so on. IBM provides tooling and documentation
to assist in the understanding, monitoring, and problem diagnosis of applications and
deployments running IBM Runtime Environments for Java.

The following sections provide details about ISA utilities.

6.3.1 IBM Monitoring and Diagnostic Tools for Java - Memory Analyzer

The IBM Monitoring and Diagnostic Tools for Java - Memory Analyzer is a Java heap analysis
tool based on the Eclipse Memory Analyzer. The IBM Monitoring and Diagnostic Tools for
Java - Memory Analyzer brings the diagnostic capabilities of the Eclipse Memory Analyzer
Tool (MAT) to the IBM virtual machines for Java.

Memory Analyzer extends Eclipse MAT version 1.1 using the Diagnostic Tool Framework for
Java (DTFJ), which enables Java heap analysis using operating system level dumps and IBM
Portable Heap Dumps (PHD).
308 IBM Power Systems Performance Guide: Implementing and Optimizing

Using Memory Analyzer enables you to:

� Diagnose and resolve memory leaks involving the Java heap.

� Derive architectural understanding of your Java application through footprint analysis.

� Improve application performance by tuning memory footprint and optimizing Java
collections and Java cache usage.

� Produce analysis plug-ins with capabilities specific to your application.

Memory Analyzer is a powerful and flexible tool for analyzing Java heap memory using
system dump or heap dump snapshots of a Java process. Memory Analyzer provides both
high-level understanding and analysis summaries using a number of standard reports. It
allows you to carry out in-depth analyses through browsing and querying the Java objects
present on the Java heap.

The following features combine to make it possible to:

� Diagnose memory leaks

– Leak Suspects Report - Memory Analyzer provides a standard report that uses its
in-built capabilities to look for probable leak suspects: large objects or collections of
objects that contribute significantly to the Java heap usage. It displays information
about those suspects: memory utilization, number of instances, total memory usage,
and owning class.

– Leak identification analysis - Memory Analyzer also provides a number of in-depth leak
identification capabilities that look for collections with large numbers of entries, single
large objects, or groups of objects of the same class.

� Analyze application footprint

– Heapdump Overview Report - In order to provide a general understanding of the Java
application being analyzed, Memory Analyzer provides an overview report that
provides information on the Java heap usage, system property settings, threads
present, and a class histogram of the memory usage.

– Top Consumers Report - Memory Analyzer also produces the Top Consumers Report
that gives a breakdown of the Java heap usage by largest objects, and also which
class loaders and classes are responsible for utilizing the most memory. This provides
a high-level insight into which J2EE application and/or code is contributing most to the
overall memory footprint.

– Component Report - Memory Analyzer can create reports outlining the top memory
consumers and providing information about potential memory inefficiencies in any
selected component.

– Object tree browsing - In addition to the report capabilities, Memory Analyzer provides
the ability to browse the Java heap using a reference tree-based view. This makes it
possible to understand the relationships between Java objects and to develop a greater
understanding of the Java object interactions and the memory requirements of the
application code.

� Analyze Java collection usage

– Array and collection fill ratio - Memory Analyzer allows you to understand the efficiency
of object arrays and collections by informing you of the fill ratio, that is, the ratio of used
elements to the array or collection size. This shows how efficiently the collections are
being used.

– Map collision ratio - For map-like collections that are keyed on object hash codes,
Memory Analyzer provides an understanding of the collision ratio for those collections.
It will also show the key value pairs for these collections.
Chapter 6. Application optimization 309

� Automate custom analysis

– Object Query Language (OQL) - Memory Analyzer contains an SQL-like query for
running Java object and field level analysis of the Java heap, using classes as tables,
objects as rows, and field or attributes as columns. This makes it possible to generate
reusable queries to locate certain objects or object collections of interest.

– Create MAT plug-ins that use the MAT snapshot and the IBM DTFJ APIs - Memory
Analyzer provides Eclipse extension points to produce custom reports against a Java
API that provides representations of the Java heap, the data on the Java heap, and the
relationships between Java objects. In addition, Memory Analyzer provides access to
the IBM DTFJ API, giving access to all of the data available in the operating system
dump.

Memory Analyzer is delivered in the IBM Support Assistant (ISA) Workbench. ISA is a free
software offering that provides a single point of access for the IBM Monitoring and Diagnostic
Tools for Java. When new versions of the tools become available, ISA notifies you and helps
you retrieve the latest version. Using ISA helps you to troubleshoot and fix problems in your
Java application.

You can expand the capabilities of Memory Analyzer using the IBM Extensions for Memory
Analyzer from alphaWorks®1. The IBM extensions provide the ability to easily analyze the
state of IBM software products, including the WebSphere Application Server.

Figure 6-11 on page 311 shows a Memory Analyzer session running in the IBM Support
Assistant Workbench.

1 http://alphaworks.ibm.com/tech/iema
310 IBM Power Systems Performance Guide: Implementing and Optimizing

Figure 6-11 ISA JVM Memory Analyzer

6.3.2 Other useful performance advisors and analyzers

In this section we discuss additional performance advisors and analyzers.

IBM Monitoring and Diagnostic Tools for Java - Garbage Collection and
Memory Visualizer (GCMV)

What it is used for: Analyzing and visualizing verbose GC logs to help you:

� Monitor and fine tune Java heap size and garbage collection performance.
� Flag possible memory leaks.
� Size the Java heap correctly.
� Select the best garbage collection policy.

Description: The IBM Monitoring and Diagnostic Tools for Java - Garbage Collection and
Memory Visualizer (GCMV) provides analysis and views of your application's verbose GC
output. GCMV displays the data in both graphical and tabulated form. It provides a clear
summary and interprets the information to produce a series of tuning recommendations, and
it can save reports to HTML, JPEG or .csv files (for export to spreadsheets). GCMV parses
and plots various log types including:

� Verbose GC logs
� -Xtgc output
� Native memory logs (output from ps, svmon and perfmon)
Chapter 6. Application optimization 311

IBM Monitoring and Diagnostic Tools for Java - Dump Analyzer
What it is used for: Analyzing system dumps produced by IBM JVMs to diagnose typical
problems such as:

� Out of memory
� Deadlocks
� Java Virtual Machine (JVM) crashes
� Java Native Interface (JNI) crashes

Description: The IBM Monitoring and Diagnostic Tools for Java - Dump Analyzer performs
automated analysis of dump files produced by the IBM Java VM. Starting with the name of the
dump to be analyzed the analysis attempts to localize the problem and if successful produces
a diagnosis of the error together with sufficient information to fix it or suggestions on how to
continue the analysis using other tools (for example, Memory Analyzer to diagnose
out-of-memory situations). If localization fails, then the tool will default to producing summary
information from the dump intended to aid further diagnosis.

IBM Monitoring and Diagnostic Tools for Java - Health Center
What it is used for: Interactive analysis of JVM problems using post mortem artifacts such
as core files or javacores.

Description: The IBM Monitoring and Diagnostic Tools for Java - Interactive Diagnostic Data
Explorer (IDDE) is a lightweight tool that helps you quickly get information from the artifact
you are investigating and where you are not sure what the problem is and you want to avoid
launching resource-intensive analysis. It supports the following features and more:

� System cores, IBM javacores and PHD files
� Full content assist for available commands
� Syntax highlighting
� Investigation log, which mixes free text with live session data
� Multiple JVM support

IBM Thread and Monitor Dump Analyzer for Java (TMDA)
What it is used for: Analyzing Java core files to help you identify threading problems such
as:

� Hangs
� Deadlocks
� Resource contention
� Bottlenecks

Description: The IBM Thread and Monitor Dump Analyzer for Java (TMDA) analyzes
javacores and diagnoses monitor locks and thread activities to identify the root cause of
hangs, deadlocks, and resource contention or bottlenecks. It compares each javacore and
provides process ID information for threads, garbage collection frequency, allocation failure
frequency, and a list of hang suspects.

IBM Monitoring and Diagnostic Tools for Java - Interactive Diagnostic Data
Explorer

What it is used for: Interactive analysis of JVM problems using post mortem artifacts such
as core files or javacores.

Description: The IBM Monitoring and Diagnostic Tools for Java - Interactive Diagnostic Data
Explorer (IDDE) is a lightweight tool that helps you quickly get information from the artifact
you are investigating, where you are not sure what the problem is and you want to avoid
launching resource-intensive analysis. It supports the following features and more:
312 IBM Power Systems Performance Guide: Implementing and Optimizing

� System cores, IBM javacores and PHD files
� Full content assist for available commands
� Syntax highlighting
� Investigation log, which mixes free text with live session data
� Multiple JVM support

IBM Pattern Modeling and Analysis Tool for Java Garbage Collector
What it is used for: Analyzing verbose GC logs to help you:

� Fine tune the Java heap
� Visualize garbage collection behavior
� Determine whether memory might be leaking

Description: IBM Pattern Modeling and Analysis Tool for Java Garbage Collector (PMAT)
parses verbose GC logs to show how heap use changes over time as a result of garbage
collection activity. Its graphical and tabular reports help you tell if there is excessive memory
usage, if the heap is becoming fragmented, and if memory might be leaking.

While carrying out analysis of JVM behavior, it is essential to understand the basic structure
and hierarchy of classes, and interaction between JVM, middleware, and applications.
Figure 6-12 shows this interaction.

Figure 6-12 JVM interaction with middleware and applications

JVM (Java Virtual Machine)

Java EE App A Java EE App B

Java Heap
Native
Heap Java

Threads

Native
& GC

Threads
I/O and many other
program requested

operations...

Middleware kernel (Weblogic, WAS, JBoss..)

Java EE Web & business services (Web Container, EJB
Container, JDBC, JMS....)
Chapter 6. Application optimization 313

314 IBM Power Systems Performance Guide: Implementing and Optimizing

Appendix A. Performance monitoring tools
and what they are telling us

This appendix discusses performance monitoring tools and explains what the tools are telling
us while trying to tune your IBM POWER Systems environment.

The following topics are discussed:

� NMON

� lpar2rrd

� Trace tools and PerfPMR

A

© Copyright IBM Corp. 2013. All rights reserved. 315

NMON

Any AIX administrator who has worked on any performance issue should already be very
familiar with and fond of the nmon tool. For those who have not, here is a short history lesson:

� nmon (Nigel’s performance MONitor) was created in 1997 by Nigel Griffiths, an employee of
IBM UK Ltd. He saw a need for a simple, small and safe tool to monitor AIX in real-time,
and additionally capture numerous elements of AIX usage including processor, processes,
memory, network and storage.

� Originally written for himself, news of its existence quickly spread.

� The first releases supported AIX 4 (which was the current major release at the time) and
Nigel continued to improve and enhance nmon to support subsequent AIX 5 and 6
releases.

� Included and installed by default since 2008 with AIX from 5.3 TL09, 6.1 TL02, VIOS 2.1
and beyond. The version included with AIX is maintained and supported by the AIX
Performance Tools team.

� nmon has since been ported to Linux and is included in various distributions for PowerPC
(PPC), x86 and even Raspberry Pi.

lpar2rrd

lpar2rrd is a tool based on perl that connects to HMC (or IVM), via SSH, and collects
performance data. It is agentless and collects processor utilization for each LPAR and global
processor utilization of the frames managed by the HMCs. Data is stored in an RRD
database. Graphs are automatically generated and presented by a web server. Information is
available for each LPAR or grouped in shared processor pools and entire frames.

The tool is free (GPL) and there is an option to contract support to get enhanced features.
lpar2rrd can be downloaded at:

www.lpar2rrd.com

It can be installed in any UNIX. The version used in this book is 3.20.

Trace tools and PerfPMR

The AIX system trace is designed for tracing of activities inside both the kernel and kernel
extension. When trace is activated, the selected trace events are recorded in an internal
buffer. The data in the buffer is written into the trace log file later. The raw trace data is in
binary format, and AIX provides further utilities to process it and generate readable report
from different perspectives. Such utilities include trcrpt, tprof, curt, splat, pprof, filemon,
and netpmon.

Note: Because nmon is included with all current releases of AIX, there is no need to install
a legacy nmon release (known as classic nmon). Classic nmon was written for versions of AIX
no longer supported and that do not contain support for newer hardware or software
generations. Neither IBM nor Nigel support or recommend the use of classic nmon on any
current AIX releases.
316 IBM Power Systems Performance Guide: Implementing and Optimizing

The tracing utilities are very useful for identifying difficult performance problems. In the
following section we discuss some details on how to use the tools and read the reports.

AIX system trace basics

The system trace is activated using the trace command. Here we introduce the trace
command and some of the trace options, and offer examples on how to use it.

A quick start example
Example A-1 shows how to get a filemon report from trace. This is useful when you need to
postprocess the trace log file from a remote machine, or when the system load is high and
trace events are being missed by filemon.

Example A-1 Quick start example of using the trace utilities

#trace -andfp -J filemon -C all -r PURR -T 30000000 -L 30000000 -o trace.raw
#trcon
#sleep 5
#trcstop
#gensyms -F > gensyms.out
#/usr/bin/trcrpt -C all -r trace.raw > trace.bin

#filemon -i trace.bin -n gensyms.out -O all,detailed -o filemon.out

System trace mode
The system trace can be used in asynchronous mode or in subcommand mode. Choose
asynchronous mode by specifying the -a option with the trace command. The trace daemon
runs in the background in this mode, and you can use trcon, trcoff, and trcstop to start
tracing, stop tracing, and exit a tracing session, respectively (Example A-2).

Example A-2 Start, stop system trace in asynchronous mode

To start trace daemon and trace data collection:
#trace -a
To stop:
#trcstop

To start trace daemon and delay the data collection
#trace -a -d

To start data collection:
#trcon

To stop data collection:
#trcoff

To exit tracing session:
#trcstop

Note: Although trace facilities are designed to have little impact on system performance, it
is not introduced for auditing purposes. You should not use it as a batch job in production
systems unless you are required to by the IBM support personnel.
Appendix A. Performance monitoring tools and what they are telling us 317

The system trace is in subcommand mode if -a is not specified. You get a dialog to interact
with the tracing facilities in this mode, which is seldom used and is not discussed here.

Default trace setting
Get the default trace setting with the command trcctl as shown in Example A-3. You can see
that the default trace log file is located in /var/adm/ras with the name trcfile and size
2621440.

Example A-3 Get the default trace settings using trcctl

trcctl -l
Default Buffer Size: 262144
Default Log File Size: 2621440
Default Log File: /var/adm/ras/trcfile
Non-Root User Buffer Size Maximum: 1048576
Default Components Directory: /var/adm/ras/trc_ct
Default LMT Log Dir: /var/adm/ras/mtrcdir

We suggest that you keep the default value of trcctl and use trace options to set values
other than default, which are discussed later. If you change it by mistake, you can use
trcctl -r to restore the default settings, as shown in Example A-4.

Example A-4 Restore the default trace settings using trcctl

trcctl -r

System trace buffer size and buffer mode options
The system trace utilities have three buffer modes. Table A-1 shows the available buffer
modes and the corresponding options in parentheses.

Table A-1 Available trace buffer modes

Buffer mode Description

Alternative (default) Two trace buffers are allocated. All trace events written into the
buffers are captured in the trace log file. The data in one buffer
will be written to the trace log file while trace events start
recording into the alternative buffer.
Trace buffer wraparound will occur if the buffer switching
happens and the trace events are not written into the trace log
file in a timely manner.
Also, the trace log wraparound will occur when it fills up and
the trace daemon continues to collect trace data. However,
this can be avoided by specifying the -s option with trace, to
stop tracing when the trace log fills.

Circular (-l) The trace events wrap within the trace buffers and are not
captured in the trace log file until the trace data collection is
stopped.

Single (-f) The collection of trace events stops when the trace buffer fills
up and the contents of the buffer are captured in the trace log
file.
This option is frequently used to analyze performance issues.
Most of the examples used in Appendix A adopt this option,
such as Example A-1, Example A-10, Example A-11, and so
on.
318 IBM Power Systems Performance Guide: Implementing and Optimizing

Use -T to specify a trace buffer size other than the default. For alternative and circular mode,
the buffer size ranges from 8192 bytes to 268,435,184 bytes. For single buffer mode, the
buffer size ranges from 16,392 bytes to 536,870,368 bytes.

If you specify a trace buffer size using -T, you should also need to specify the trace log file
size using -L. The following criteria must be met:

� In the circular and alternate modes, the trace buffer size must be one-half or less the size
of the trace log file.

� In the single mode, the trace log file must be at least the size of the buffer.

By default, all logical processors share the same trace buffer. However, the system trace
subsystem can use separate trace buffers for each logical processor, too. This is useful to
avoid the situation that one logical processor has much more activities and overflows the
trace events of other logical processors. This is achieved by specifying the -C all option.

Trace hooks and event groups
Because there are large numbers of trace events, AIX uses trace event identifiers and trace
event groups to categorize and manage them. The trace event identifier is also called trace
hook identifier.

Example A-5 shows how to get all the trace hook identifiers using trcrpt. The four digits at
the beginning of each line are the trace event identifier, for example, 0010 is the trace event
identifier for the TRACE ON event.

Example A-5 Using trcrpt -j to get all the track hook identifiers

#trcrpt -j|pg
0010 TRACE ON
0020 TRACE OFF
0030 TRACE HEADER
0040 TRACEID IS ZERO
0050 LOGFILE WRAPAROUND
0060 TRACEBUFFER WRAPAROUND
0070 UNDEFINED TRACE ID
0080 DEFAULT TEMPLATE
0090 trace internal events
00a0 TRACE_UTIL
1000 FLIH
1001 OFED Trace
1002 STNFS GENERAL
1003 STNFS VNOPS
1004 STNFS VNOPS HOLD/RELE
1005 STNFS ID
1006 STNFS IO
1007 STNFS OTW
1008 STNFS TREE
1009 STNFS VFSOPS
100b TRACE_UNMANAGED
1010 SYSTEM CALL
101d DISPATCH SRAD
101e DISPATCH Affinity
1020 SLIH

Note: The trace buffer is pinned in memory, and so it consumes more physical memory if
you specify a larger value.
Appendix A. Performance monitoring tools and what they are telling us 319

1022 MSTOR_ERR
1025 SFWCOM
1027 THRD_REAFF
1028 THRD_MREAFF
1029 SFW
...

Trace event groups are defined sets of trace events. Example A-6 shows how to get the trace
event group using trcrpt. The name at the beginning of each stanza is the name of the trace
group. For example, tidhk is the name of the group “Hooks needed to display thread name”.

Example A-6 Using trcrpt to get all trace event groups

#trcrpt -G|pg
tidhk - Hooks needed to display thread name (reserved)
 106,10C,134,139,465
...
tprof - Hooks for TPROF performance tool (reserved)
 134,139,210,234,38F,465,5A2,5A5,5D8
pprof - Hooks for PPROF performance tool (reserved)
 106,10C,134,135,139,419,465,467,4B0,5D8
filemon - Hooks for FILEMON performance tool (reserved)

101,102,104,106,107,10B,10C,10D,12E,130,137,139,154,15B,163,19C,1BA,1BE,1BC,1C9,22
1,222,228,232,2A1,2A2,3D3,419,45B,4B0,5D8,AB2
netpmon - Hooks for NETPMON performance tool (reserved)

100,101,102,103,104,106,107,10C,134,135,139,163,19C,200,210,211,212,213,215,216,25
2,255,256,262,26A,26B,2A4,2A5,2A7,2A8,2C3,2C4,2DA,2DB,2E6,2E7,2EA,2EB,30A,30B,320,
321,32D,32E,330,331,334,335,351,352,38F,419,465,467,46A,470,471,473,474,488,48A,48
D,4A1,4A2,4B0,4C5,4C6,598,599,5D8
curt - Hooks for CURT performance tool (reserved)

100,101,101D,102,103,104,106,10C,119,134,135,139,200,210,215,38F,419,465,47F,488,4
89,48A,48D,492,4B0,5D8,600,603,605,606,607,608,609
splat - Hooks for SPLAT performance tool (reserved)
 106,10C,10E,112,113,134,139,200,419,465,46D,46E,492,5D8,606,607,608,609
perftools - Hooks for all six performance tools (reserved)

100,101,101D,102,103,104,106,107,10B,10C,10D,10E,112,113,119,12E,130,134,135,137,1
39,154,15B,163,19C,1BA,1BC,1BE,1BC,1C9,200,210,211,212,213,215,216,221,222,228,232
,234,252,255,256,262,26A,26B,2A1,2A2,2A4,2A5,2A7,2A8,2C3,2C4,2DA,2DB,2E6,2E7,2EA,2
EB,30A,30B,320,321,32D,32E,330,331,334,335,351,352,38F,3D3,419,45B,465,467,46A,46D
,46E,470,471,473,474,47F,488,489,48A,48D,492,4A1,4A2,4B0,4C5,4C6,598,599,5A2,5A5,5
D8,600,603,605,606,607,608,609,AB2
tcpip - TCP/IP PROTOCOLS AND NETWORK MEMORY (reserved)
 252,535,536,537,538,539,254,25A,340
...

Trace event groups are useful because you usually need to trace a collection of trace events
to identify a specific functional or performance problem. As an example, the most frequently
used trace-based tools tprof, pprof, filemon, netpmon, curt, and splat all have their
corresponding specific trace event groups that contain all necessary trace event identifiers for
generating reports.
320 IBM Power Systems Performance Guide: Implementing and Optimizing

You can also use trcevgrp -l to display details about specific event groups, as shown in
Example A-7.

Example A-7 Using trcevgrp to display specific event groups

#trcevgrp -l filemon
filemon - Hooks for FILEMON performance tool (reserved)

101,102,104,106,107,10B,10C,10D,12E,130,137,139,154,15B,163,19C,1BA,1BE,1BC,1C9,22
1,222,228,232,2A1,2A2,3D3,419,45B,4B0,5D8,AB2

Choosing trace hooks and event groups
You can choose the trace hooks and event groups using specific trace options, shown in
Table A-2.

Table A-2 Trace options and descriptions

Merging trace log files and reordering
In alternative mode, the trace daemon normally wraps around the trace log when it fills up and
continues to collect trace data, unless the -s option is specified. In circular mode, the trace
buffer wraparound might occur. Due to the wraparound events, the trace log file might not be
in chronological order. You need the trace log file in chronological order to do the post
processing with curt, tprof, filemon, and so on.

You can force the reordering with the -r command, as shown in Example A-8.

Example A-8 Reordering the trace log file

The trace.raw is the original trace file, and we can reoder it chronologically to
trace.r.
#trcrpt -o trace.r -r trace.raw

In systems with multiple logical processors and trace with the -C all option, you need to
specify the -C all option with the -r option to merge, reorder and sort the trace log files into
one raw data file in chronological order. We suggest that you perform this step before every
post processing. Refer to Example A-9 on page 322.

Trace options Description

-j <event identifier> Specifies the user-defined events to collect trace dataa.
Specifies a two-digit hook ID in the form hh as in hh00, hh10,...,hhF0.
Specifies a three-digit hook ID in the form hhh as in hhh0. Specifies a
four-digit hook ID in the form hhhh as in hhhh.

a. Multiple events can be separated by commas.

-J <event group> Specifies the event groups to be includedb.

b. Multiple groups can be separated by commas.

-k <event identifier> Specifies the user-defined events to exclude trace dataa.

-K <event group> Specifies the event groups to be excludedb.

Note: Usually, you need to include the tidhk event group to get detailed process and
thread information, and exclude vmm events if it is irrelevant to the problem you are
analyzing, because usually there are lots of vmm events.
Appendix A. Performance monitoring tools and what they are telling us 321

Example A-9 Merging, reordering, and sorting the trace log file in chronological order

#trcrpt -o trace.r -r -C all trace.raw

Generate the trace report
We demonstrated using trcrpt to generate a report in ASCII format in 4.4.3, “File system
best practice” on page 163. Specifying the -O option can generate more detailed reports,
shown in Table A-3. Multiple options can be separated by commas. smitty and trcrpt are
also available for use.

Table A-3 trcrpt -O options

Example A-10 shows how to start the trace data collection and generate a trace report.

Example A-10 General a trace report

//comments: start trace immediately.
#trace -a -f -T 10000000 -L 10000000 -o trace.raw

//comments: monitor for 5 seconds; then stop tracing.
#sleep 5; trcstop

//comments: generate trace report “trace.int” from the trace log file “trace.raw”.
#trcrpt -Opid=on,tid=on,exec=on,svc=on,cpuid=on,timestamp=1 -o trace.int
./trace.raw

//comments: now you can read the trace report.
#more trace.int
...

Frequently used trcrpt -O options Explanation

pid=on Displays the process IDs in the trace report.

tid=on Displays the thread ID in the trace report.

exec=on Displays the exec path names in the trace
report.

svc=on Displays the value of the system call in the
trace report.

timestamp=[0|1|2|3|4] The most frequently used values are 0 and 1.
0 - Time elapsed since the trace was started
and delta time from the previous event. The
elapsed time is in seconds and the delta time is
in milliseconds. This is the default.
1 - Short elapsed time. Reports only the
elapsed time (in seconds) from the start of the
trace.

cpuid=on Displays the physical processor number in the
trace report.

Note: This example does not specify specific trace hooks, or exclude any trace hooks.
Thus all trace events are logged. The trace buffer might get filled up before any useful trace
events are written.
322 IBM Power Systems Performance Guide: Implementing and Optimizing

You can now get a more detailed report using the -O option for similar DIO demotion cases;
refer to Example A-11. From this report, you can see that “dd” is causing the IO demotion with
unaligned IO length (0x1001).

Example A-11 Using trcrpt with -O options

//comments: include hook id “59b” for DIO activities, and “tidhk” for process name
reporting.
#trace -J tidhk -j 59b -a -f -T 10000000 -L 10000000 -o trace.raw

//comments: monitor for 5 seconds, and then stop tracing.
#sleep 5; trcstop

//comments: filter the trace report to display only hook id “59b” events.
#trcrpt -d 59b -Opid=on,tid=on,exec=on,svc=on,cpuid=on,timestamp=1 -o trace.int
./trace.raw
#more trace.int
...
ID PROCESS NAME CPU PID TID I SYSTEM CALL ELAPSED APPL
SYSCALL KERNEL INTERRUPT
...
59B dd 0 2162750 30933019 0.000113
JFS2 IO write: vp = F1000A0232DF8420, sid = DE115E, offset = 00000000052FB2F6,
length = 1001
59B dd 0 2162750 30933019 0.000113
JFS2 IO dio move: vp = F1000A0232DF8420, sid = DE115E, offset = 00000000052FB2F6,
length = 1001
59B dd 0 2162750 30933019 0.000126
JFS2 IO devstrat (pager strategy): bplist = F1000A00E067C9A0, vp =
F1000A0232DF8420, sid = DE115E, lv blk = A60650, bcount = 0400
59B dd 4 2162750 30933019 0.000492
JFS2 IO gather: bp = F1000A00E067D2E0, vp = F1000A0232DF8420, sid = DE115E, file
blk = 297D8, bcount = 2000
59B dd 4 2162750 30933019 0.000495
JFS2 IO devstrat (pager strategy): bplist = F1000A00E067D2E0, vp =
F1000A0232DF8420, sid = DE115E, lv blk = A60650, bcount = 1400
59B dd 4 2162750 30933019 0.000514
JFS2 IO dio demoted: vp = F1000A0232DF8420, mode = 0001, bad = 0002, rc = 0000,
rc2 = 0000

If using trace data from another machine, you need the trcnm output and the /etc/trcfmt file
to generate the ASCII report, otherwise the output will be incorrect. Refer to Example A-12.

Example A-12 Generate a trace report for a remote machine

On remote machine,
#trcnm > trcnm.out
#cp /etc/trcfmt trace.fmt

On reporting machine,
Download the “trcnm.out” and “trace.fmt” together with the trace raw data.
#trcrpt -n trcnm.out -t trace.fmt <other options>
Appendix A. Performance monitoring tools and what they are telling us 323

Generate curt, tprof, filemon, splat, and netpmon reports from trace logs
You can generate curt, tprof, pprof, splat, filemon, and netpmon reports from the trace
log if the related trace events are included in the trace log. Example A-13 shows an example
of using the trace log to generate a curt report.

Example A-13 Generate a curt report using trace log

//comments: start trace using single buffer mode to collect trace event group
“curt”, and delay starting of the trace data collection.
#/usr/bin/trace -andfp -C all -J curt -r PURR -T 20000000 -L 20000000 -o
trace_bin

//comments: start trace data collection and monitor for 10 seconds, then stop
tracing.
#trcon; sleep 10; trcstop

//comments: gather the symbol information necessary to run the “curt” command.
#gensyms > gensyms.out

//comments: reorder the trace logs to a single trace raw file “trace_curt”.
#trcrpt -C all -r trace_bin > trace_curt

//comments: generate curt report
#/usr/bin/curt -i trace_curt -n gensyms.out -ptes > curt.out

Example A-14 shows an example of using the trace log to generate a tprof report. Note that
to run the tprof command in manual offline mode, the following files must be available:

� The symbolic information file rootstring.syms

� The trace log file rootstring.trc [-cpuid]

Example A-14 Generate a tprof report using trace log

//comments: start trace using single buffer mode to collect trace event group
“tprof”, and delay starting of the trace data collection.
#/usr/bin/trace -andfp -C all -J tprof -r PURR -T 20000000 -L 20000000 -o
myprof.trc

//comments: start trace data collection and monitor for 10 seconds, then stop
tracing.
#trcon; sleep 10; trcstop

//comments: gather the symbol information necessary to run the “tprof” command.
#gensyms > myprof.syms

//comments: generate tprof report; rootstring equals to “myprof” here.
#tprof -uskejzlt -r myprof
more myprof.prof

For a detailed explanation of the tprof and curt reports, refer to POWER7 and POWER7+
Optimization and Tuning Guide, SG24-8079.

Example A-15 on page 325 shows an example of using the trace log to generate a filemon
report. It is good practice to avoid “trace events lost” by using -f to select the single buffer
mode, as in this example.
324 IBM Power Systems Performance Guide: Implementing and Optimizing

Example A-15 Generate a filemon report using the trace log

//comments: start trace using single buffer mode to collect trace event group
“filemon”, and delay starting of the trace data collection.
#trace -andfp -J filemon -C all -r PURR -T 20000000 -L 20000000 -o trace.raw

//comments: start trace data collection and monitor for 10 seconds, then stop
tracing.
#trcon; sleep 10; trcstop

//comments: gather the symbol information necessary to run the “filemon” command.
#gensyms -F > gensyms.out

//comments: reorder the trace logs to a single trace raw file “trace.fmon”.
#/usr/bin/trcrpt -C all -r trace.raw > trace.fmon

//comments: generate filemon report “filemon.out”
#filemon -u -i trace.fmon -n gensyms.out -O all,detailed -o filemon.out

For a detailed explanation of the filemon report, refer to 4.4.4, “The filemon utility” on
page 176.

Using the truss command

The truss command is useful when identifying application problems together with the system
tracing utilities such as tprof, curt, and so on.

When we identifying the problematic process with tprof, curt, filemon, and so on, use the
truss command to trace the process. Some frequently used options are in Table A-4.

Table A-4 truss options

Example A-16 gives an example of using truss to debug application issues.

Example A-16 Using truss to identify application issues

To get a summary report of the process, truss -c -p <pid> for an interval and then
Ctrl+C:

truss options Explanation

-p <pid> Specifies the processes for tracing the execution.

-c Counts traced system calls, faults, and signals instead of displaying
trace results line by line.
Produces a summary report after the traced command terminates or
when truss is interrupted.
Use this option alone or with -f.

-d Includes a timestamp with each line of output.

-f Follows all child processes.

-l Displays the thread ID in the output.

-t[!]syscall Includes or excludes system calls from the trace process.

-u [!] [LibraryName
[...]::[!]FunctionName [...]]

Traces dynamically loaded user level function calls from user libraries.
Appendix A. Performance monitoring tools and what they are telling us 325

#truss -c -p 6619376
^Csyscall seconds calls errors
kwrite .00 6
munmap 12.06 81
msync 24.36 81
mmap .00 79
 ---- --- ---
sys totals: .00 247 0
usr time: .00
elapsed: .00

truss the execution of the process for an interval and Ctrl+C to stop truss:
#truss -d -o truss.log -l -p 6619376
^C
With -l, the thread id is shown at each line:
#more truss.log
Mon Oct 15 16:54:36 2012
29294829: 0.0000: mmap(0x00000000, 4194304, PROT_READ|PROT_WRITE,
MAP_FILE|MAP_VARIABLE|MAP_SHARED, 10, 29360128) = 0x3040000
0
30933087: kwrite(1, " m s y n c i n t e r v".., 45) = 45
30933087: 0.0007: munmap(0x30000000, 4194304) = 0
30933087: 0.0014: mmap(0x00000000, 4194304, PROT_READ|PROT_WRITE,
MAP_FILE|MAP_VARIABLE|MAP_SHARED, 8, 20971520) = 0x30000000
29294829: 0.0062: msync(0x30400000, 4194304, 32) = 0
30933087: 0.2532: msync(0x30000000, 4194304, 32) = 0
29294829: 0.6684: munmap(0x30400000, 4194304) = 0
30933087: 0.6693: munmap(0x30000000, 4194304) = 0
29294829: 0.6699: mmap(0x00000000, 4194304, PROT_READ|PROT_WRITE,
MAP_FILE|MAP_VARIABLE|MAP_SHARED, 10, 29360128) = 0x3000000
0
30671061: 0.6702: mmap(0x00000000, 4194304, PROT_READ|PROT_WRITE,
MAP_FILE|MAP_VARIABLE|MAP_SHARED, 9, 25165824) = 0x30400000
29294829: 0.6751: msync(0x30000000, 4194304, 32) = 0
30671061: 0.7616: msync(0x30400000, 4194304, 32) = 0

Use “-t” flag to trace system calls, as follows:
#truss -tmmap,msync,munmap -p 6619376
munmap(0x30400000, 4194304) = 0
munmap(0x31400000, 4194304) = 0
mmap(0x00000000, 4194304, PROT_READ|PROT_WRITE, MAP_FILE|MAP_VARIABLE|MAP_SHARED,
10, 29360128) = 0x30400000
munmap(0x30800000, 4194304) = 0
mmap(0x00000000, 4194304, PROT_READ|PROT_WRITE, MAP_FILE|MAP_VARIABLE|MAP_SHARED,
8, 20971520) = 0x30800000
munmap(0x30C00000, 4194304) = 0
mmap(0x00000000, 4194304, PROT_READ|PROT_WRITE, MAP_FILE|MAP_VARIABLE|MAP_SHARED,
6, 12582912) = 0x30C00000
msync(0x30800000, 4194304, 32) = 0

Use “-u” to trace dynamically loaded user level function calls from user
libraries, such as libc.a.
#truss -u libc.a::* -p 6619376
kwrite(1, " m s y n c i n t e r v".., 46) = 46
->libc.a:gettimeofday(0x200dba98, 0x0)
326 IBM Power Systems Performance Guide: Implementing and Optimizing

->libc.a:gettimeofday(0x200f9a90, 0x0)
<-libc.a:gettimeofday() = 0 0.000000
munmap(0x31400000, 4194304) = 0
<-libc.a:gettimeofday() = 0 0.000000
->libc.a:gettimeofday(0x200f9a98, 0x0)
<-libc.a:gettimeofday() = 0 0.000000
mmap(0x00000000, 4194304, PROT_READ|PROT_WRITE, MAP_FILE|MAP_VARIABLE|MAP_SHARED,
10, 29360128) = 0x30000000
mmap(0x00000000, 4194304, PROT_READ|PROT_WRITE, MAP_FILE|MAP_VARIABLE|MAP_SHARED,
9, 25165824) = 0x30400000
->libc.a:gettimeofday(0x200bda98, 0x0)
->libc.a:gettimeofday(0x200f9a90, 0x0)

Real case studies using tracing facilities

Here we introduce a real case scenario to explain how to use the trace tools to identify a
performance problem, based on the approaches mentioned.

Problem description
The client complains that I/O is quite slow when writing to a mmaped data file using a
multithreaded application. From the application log, the application occasionally hangs many
seconds waiting for I/O to complete.

Also, the client believes the I/O pattern should be sequential but the bandwidth is limited, only
70 MBps on V7000 storage.

The sample code used to duplicate the client problem is in Example A-17. It opens a file,
truncates it to size so that there is 4 MB space for each thread. Then all the threads will mmap
their own 4 MB space, modify it, msync it, and then munmap it. We simply duplicated the client
problem by running ./testmmap 8.

Example A-17 Sample code for real case studies

/*
 * The following [enclosed] code is sample code created by IBM
 * Corporation. This sample code is not part of any standard IBM product
 * and is provided to you solely for the purpose of demonstration.
 * The code is provided 'AS IS',
 * without warranty of any kind. IBM shall not be liable for any damages
 * arising out of your use of the sample code, even if they have been
 * advised of the possibility of such damages.
 */
/*
To compile: xlC_r testmmap.cpp -o testmmap

Tip: You can implement most of the truss features using probevue, too. Refer to the
probevue user guide at:

http://pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.genprogc/doc/ge
nprogc/probevue_userguide.htm

Note: To avoid disclosure of sensitive data, we used a sample program here to duplicate
the client problem.
Appendix A. Performance monitoring tools and what they are telling us 327

Problem report: chenchih@cn.ibm.com
*/
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/select.h>

#define MAXTHREADNUM 128
#define INTERVAL 10000
#define BUF_SIZE 4*1024*1024

int testmmap(int arg)
{
 int fd = 0, n = 0, i = 0;
 timeval start, end;
 void *mp = NULL;
 struct stat sbuf;
 char idx = 0;
 long interval;
 int mplen = BUF_SIZE;

 if((fd = open("m.txt", O_RDWR, 0644)) >= 0)
 {
 fstat(fd, &sbuf);
 printf("file size = %d\n", sbuf.st_size);
 }
 else
 {
 printf("open failed\n");
 return 0;
 }

 while(1)
 {
 idx++;
 if((mp = mmap(NULL, mplen, PROT_READ|PROT_WRITE, MAP_SHARED, fd,
arg*BUF_SIZE)) != (void*)-1)
 {
 memset(mp, idx, mplen);

 msync(mp, mplen, MS_SYNC);

 munmap(mp, mplen);
 }
 } //while

 close(fd);
328 IBM Power Systems Performance Guide: Implementing and Optimizing

 return 0;
}

extern "C" void* testfunc(void* arg)
{
 unsigned int i=0;
 int ret = 0;
 testmmap((int)arg);
 return NULL;
}

int main(int argc, char* argv[])
{
 pthread_t tid[MAXTHREADNUM] = {0};
 int ret;
 struct stat sbuf;

 if(argc < 2)
 {
 printf("usage: %s <num>\n", argv[0]);
 return 0;
 }

 int count = atoi(argv[1]);
 if(count > MAXTHREADNUM)
 count = MAXTHREADNUM;

 int fd, bufsz;
 bufsz = count * BUF_SIZE;
 if((fd = open("m.txt", O_RDWR|O_CREAT, 0644)) > 0)
 {
 fstat(fd, &sbuf);
 printf("file size = %d\n", sbuf.st_size);

 ftruncate(fd, bufsz); //file is truncated, this might cause fragmentation
if the file is not allocated.
 fstat(fd, &sbuf);
 printf("file size after truncate = %d\n", sbuf.st_size);
 }
 close(fd);

 for(int i =0; i < count; i++)
 {
 ret = pthread_create(&tid[i], NULL, testfunc, (void*)i);
 if(ret != 0)
 {
 printf("pthread_create error, err=%d\n", ret);
 return -1;
 }
 }

 void* status;
 for(int i =0; i < count; i++)
Appendix A. Performance monitoring tools and what they are telling us 329

 {
 pthread_join(tid[i], &status);
 printf("thread %d exit status = %d\n", tid[i], (int)status);
 }
 return 0;
}

Problem analysis
We generated a curt report, shown in Example A-18, using the approach illustrated in
Example A-13 on page 324. We found that a “msync” system call was very slow, with
261.1781 ms avg elapsed time, and 610.8883 ms max elapsed time, while the average
processor time consumed was only 1.3897 ms. The behavior seemed quite abnormal.
Looking into the process detail part, we could see that the msync subroutine is called by the
testmmap process. The PID of testmmap was 17629396.

Example A-18 Curt report

#more curt.out
...
System Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time Tot ETime Avg ETime
Min ETime Max ETime SVC (Address)
 (msec) time (msec) (msec) (msec) (msec) (msec)
(msec) (msec)
======== =========== ====== ======== ======== ======== ======== =========
========= ========= ================
 48 66.7060 0.32% 1.3897 0.0279 7.5759 12536.5502 261.1781
56.6501 610.8883 msync(32a63e8)
 47 21.8647 0.10% 0.4652 0.4065 0.5593 7108.8461 151.2520
3.1755 558.8734 munmap(32a63d0)
 55 0.8696 0.00% 0.0158 0.0071 0.0274 509.6747 9.2668
2.4847 20.3143 mmap(32a6400)
...

Process Details for Pid: 17629396
 Process Name: testmmap
 8 Tids for this Pid: 38731907 37945371 32964661 29622293 29425739 26476695
 9961589 9502927

 Total Application Time (ms): 70.766818
 Total System Call Time (ms): 89.458826
 Total Hypervisor Call Time (ms): 8.406510

 Process System Call Summary

 Count Total Time % sys Avg Time Min Time Max Time Tot ETime Avg ETime
Min ETime Max ETime SVC (Address)
 (msec) time (msec) (msec) (msec) (msec) (msec)
(msec) (msec)
======== =========== ====== ======== ======== ======== ======== =========
========= ========= ================
 48 66.7060 0.32% 1.3897 0.0279 7.5759 12536.5502 261.1781
56.6501 610.8883 msync(32a63e8)
330 IBM Power Systems Performance Guide: Implementing and Optimizing

 47 21.8647 0.10% 0.4652 0.4065 0.5593 7108.8461 151.2520
3.1755 558.8734 munmap(32a63d0)
 55 0.8696 0.00% 0.0158 0.0071 0.0274 509.6747 9.2668
2.4847 20.3143 mmap(32a6400)

 Pending System Calls Summary

Accumulated Accumulated SVC (Address) Tid
Time (msec) ETime (msec)
============ ============ ========================= ================
 0.0054 7.7179 msync(32a63e8) 38731907
 0.0050 1.5159 msync(32a63e8) 9502927
 0.0042 6.4927 msync(32a63e8) 37945371
 0.0022 5.3160 msync(32a63e8) 9961589
 0.0019 13.7364 mmap(32a6400) 32964661

Then we could trace the msync system call via the trace or truss command. Because we
already had the process ID here, it was simpler to use truss directly, as in Example A-19. We
saw that the msync I/O size was always 4194304 (4 MB). According to the application logic,
the 4 MB is purely dirty pages, so it is a large block of sequential I O, and should be very fast.

Example A-19 trace msync subroutine

#truss -d -fael -tmsync,munmap -p 17629396
17629396: psargs: ./testmmap 8
Tue Oct 16 12:58:09 2012
17629396: 32964661: 0.0000: munmap(0x30400000, 4194304) = 0
17629396: 9961589: 0.0008: munmap(0x30C00000, 4194304) = 0
17629396: 9502927: 0.0014: munmap(0x30800000, 4194304) = 0
17629396: 26476695: 0.0022: munmap(0x31800000, 4194304) = 0
17629396: 9961589: 0.0074: msync(0x30000000, 4194304, 32) = 0
17629396: 29622293: 0.0409: munmap(0x31400000, 4194304) = 0
17629396: 9502927: 0.0419: msync(0x30400000, 4194304, 32) = 0
17629396: 26476695: 0.6403: msync(0x30C00000, 4194304, 32) = 0
17629396: 37945371: 0.6723: munmap(0x31000000, 4194304) = 0
17629396: 29622293: 0.6779: msync(0x31800000, 4194304, 32) = 0
17629396: 38731907: 0.7882: msync(0x30800000, 4194304, 32) = 0
17629396: 29622293: 0.9042: munmap(0x31800000, 4194304) = 0
17629396: 9502927: 0.9049: munmap(0x30400000, 4194304) = 0
17629396: 32964661: 0.9104: msync(0x31C00000, 4194304, 32) = 0
17629396: 9502927: 0.9105: msync(0x30400000, 4194304, 32) = 0
17629396: 9961589: 0.9801: munmap(0x30000000, 4194304) = 0
17629396: 38731907: 0.9809: munmap(0x30800000, 4194304) = 0
17629396: 32964661: 0.9815: munmap(0x31C00000, 4194304) = 0
17629396: 29425739: 0.9829: msync(0x31400000, 4194304, 32) = 0
17629396: 32964661: 1.0529: msync(0x30800000, 4194304, 32) = 0

However, from filemon, the average I/O size underneath msync was 8.3 512-byte blocks
(~4 KB), as in Example A-20. Also, the seek ratio was 100%, which means the I/O is purely
random, while the seek distance is quite short, only about 110.7 blocks (~55 KB).

Example A-20 filemon report

--
Detailed Logical Volume Stats (512 byte blocks)
--
Appendix A. Performance monitoring tools and what they are telling us 331

VOLUME: /dev/fslv05 description: /data
writes: 23756 (0 errs)
 write sizes (blks): avg 8.3 min 8 max 1648 sdev 21.3
 write times (msec): avg 128.851 min 3.947 max 493.747 sdev 117.692
 write sequences: 23756
 write seq. lengths: avg 8.3 min 8 max 1648 sdev 21.3
seeks: 23756 (100.0%)
 seek dist (blks): init 5504,
 avg 110.7 min 8 max 65904 sdev 1831.6
 seek dist (%tot blks):init 0.01312,
 avg 0.00026 min 0.00002 max 0.15713 sdev 0.00437
time to next req(msec): avg 0.107 min 0.000 max 1423.920 sdev 10.018
throughput: 37427.0 KB/sec
utilization: 0.44
PS: we can also get some clue of this using iostat command.

Usually such issues are likely caused by file fragmentation. We used the fileplace command
to confirm this, as in Example A-21. There were 7981 fragments in the 32 MB file.

Example A-21 fileplace -pv output

#fileplace -pv m.txt|pg

File: m.txt Size: 33554432 bytes Vol: /dev/fslv05
Blk Size: 4096 Frag Size: 4096 Nfrags: 8192
Inode: 6 Mode: -rw-r--r-- Owner: root Group: system

 Physical Addresses (mirror copy 1)
Logical Extent

 26732319 hdisk1 1 frags 4096 Bytes, 0.0%
00000671
 26732324-26732330 hdisk1 7 frags 28672 Bytes, 0.1%
00000676-00000682
 26732332 hdisk1 1 frags 4096 Bytes, 0.0%
00000684
 26732337 hdisk1 1 frags 4096 Bytes, 0.0%
00000689
 26732348 hdisk1 1 frags 4096 Bytes, 0.0%
00000700
 26732353 hdisk1 1 frags 4096 Bytes, 0.0%
00000705
 ...
26738415 hdisk1 1 frags 4096 Bytes, 0.0%
00006767
 26738422 hdisk1 1 frags 4096 Bytes, 0.0%
00006774
 26738428 hdisk1 1 frags 4096 Bytes, 0.0%
00006780

 8192 frags over space of 8252 frags: space efficiency = 99.3%
 7981 extents out of 8192 possible: sequentiality = 2.6%
332 IBM Power Systems Performance Guide: Implementing and Optimizing

Problem solution
Further analysis shows that the fragmentation is caused by concurrent writes to an
unallocated mmaped file (m.txt). You can create the m.txt in advance, and the problem will
not occur, as in Example A-22. After the adjustment, the I/O bandwidth on V7000 storage is
~350 MBps, as compared to less than 70 MBps before adjustment.

Example A-22 Create and allocate the mmaped file before concurrent write

#dd if=/dev/zero of=./m.txt bs=1M count=32
#./testmmap 8

From curt and filemon output in Example A-23, the average elapsed time now is 26.3662;
the average I/O is 2048 blocks, which is 1 MB in size, and the seek percent is 25.2%, which
means the majority of I/O is sequential. Also you can see from the fileplace output at the
bottom of Example A-23 that the file sequentially is 100%.

Example A-23 Curt and filemon report after adjustment

curt report:
...
System Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time Tot ETime Avg ETime
Min ETime Max ETime SVC (Address)
 (msec) time (msec) (msec) (msec) (msec) (msec)
(msec) (msec)
======== =========== ====== ======== ======== ======== ======== =========
========= ========= ================
 460 1885.0173 4.29% 4.0979 0.0192 9.0059 12128.4694 26.3662
10.4989 61.4130 msync(32a63e8)
 441 294.1300 0.67% 0.6670 0.0178 1.1844 2540.1148 5.7599
0.6690 33.9758 munmap(32a63d0)
 459 19.4737 0.04% 0.0424 0.0090 0.1565 751.7646 1.6378
0.0467 8.8085 mmap(32a6400)

filemon report:
...
--
Detailed Logical Volume Stats (512 byte blocks)
--

VOLUME: /dev/fslv05 description: /data
writes: 3264 (0 errs)
 write sizes (blks): avg 2048.0 min 2048 max 2048 sdev 0.0
 write times (msec): avg 5.379 min 2.724 max 29.700 sdev 2.657
 write sequences: 822
 write seq. lengths: avg 8132.2 min 2048 max 32768 sdev 3776.7
seeks: 822 (25.2%)
 seek dist (blks): init 22528,
 avg 25164.7 min 2048 max 67584 sdev 16029.7
time to next req(msec): avg 3.062 min 0.001 max 39.448 sdev 5.873
throughput: 333775.0 KB/sec
utilization: 0.59

fileplace report:
#fileplace -pv m.txt
Appendix A. Performance monitoring tools and what they are telling us 333

File: m.txt Size: 33554432 bytes Vol: /dev/fslv05
Blk Size: 4096 Frag Size: 4096 Nfrags: 8192
Inode: 6 Mode: -rw-r--r-- Owner: root Group: system

 Physical Addresses (mirror copy 1)
Logical Extent

 26732416-26740351 hdisk1 7936 frags 32505856 Bytes, 96.9%
00000768-00008703
 26740608-26740863 hdisk1 256 frags 1048576 Bytes, 3.1%
00008960-00009215

 8192 frags over space of 8448 frags: space efficiency = 97.0%
 2 extents out of 8192 possible: sequentiality = 100.0%

PerfPMR

PerfPMR is an official AIX Support tool. It provides a set of scripts to gather AIX performance
data, including:

� 600 seconds (default) of general system performance data (monitor.sh 600)
� System trace data

– Trace data for reporting
– Trace data for post processing tools (curt, tprof, pprof, and splat)
– Stand alone tprof and filemon data collection

� PMU events count data
� Hardware and software configuration data
� iptrace and tcpdump data

PerfPMR is available from this public website:

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

You can refer to the README in the PerfPMR package for data collection and how to send
data to IBM. We suggest you get a baseline PerfPMR data package under normal situations
in advance, and collect more performance data when the problem is occurring.

You can get more information about PerfPMR at the following website:

http://www-01.ibm.com/support/docview.wss?uid=aixtools-27a38cfb

The hpmstat and hpmcount utilities

IBM Power processor provides on-chip performance monitor units (PMUs) to count the
number of performance critical processor events. Use the PMU-based utilities to analyze
specific processor performance problems including memory affinity, TLB misses, SLB misses,
and so on.

Note: We suggest you only use the PerfPMR tools when collecting data on production
systems. Do not use the trace command on production directly unless you are required to
do so.
334 IBM Power Systems Performance Guide: Implementing and Optimizing

Two commands can be used to count and analyze PMU events, hpmcount and hpmstat,
respectively. The hpmcount command is used to collect PMU statistics, while the hpmstat
command collects data system wide. We have already shown an example using hpmstat to
monitor SLB misses in 4.2.3, “One TB segment aliasing” on page 129.

Here is another example using hpmstat to identify memory affinity issues. As from the pmlist
output, Group #108 is used for memory affinity analyzing; refer to Example A-24.

Example A-24 Determine the processor event group for memory affinity

#pmlist -g -1|pg
...
Group #108: pm_dsource12
Group name: Data source information
Group description: Data source information
Group status: Verified
Group members:
Counter 1, event 27: PM_DATA_FROM_RL2L3_MOD : Data loaded from remote L2 or L3
modified
Counter 2, event 25: PM_DATA_FROM_DMEM : Data loaded from distant memory
Counter 3, event 24: PM_DATA_FROM_RMEM : Data loaded from remote memory
Counter 4, event 31: PM_DATA_FROM_LMEM : Data loaded from local memory
Counter 5, event 0: PM_RUN_INST_CMPL : Run_Instructions
Counter 6, event 0: PM_RUN_CYC : Run_cycles

Thus you can use the hpmstat command to monitor memory affinity status, as in
Example A-25. In the example, we monitored the PMU event group #108, which contains the
memory affinity metrics for 20 seconds. The memory locality value is 0.667, which means
66.7% of memory access is local, which indicates good memory affinity. We can try the RSET
command and vmo options to get even better memory affinity.

Example A-25 Memory affinity report

hpmstat -r -g 108 20
 Execution time (wall clock time): 20.009228351 seconds

 Group: 108
 Counting mode: user+kernel+hypervisor+runlatch
 Counting duration: 1040.320869363 seconds
 PM_DATA_FROM_RL2L3_MOD : 66621
 (Data loaded from remote L2 or L3 modified)
 PM_DATA_FROM_DMEM (Data loaded from distant memory) : 0
 PM_DATA_FROM_RMEM (Data loaded from remote memory) : 60922
 PM_DATA_FROM_LMEM (Data loaded from local memory) : 122057
 PM_RUN_INST_CMPL (Run_Instructions) : 7322552457
 PM_RUN_CYC (Run_cycles) : 78132452650

 Normalization base: time

 Counting mode: user+kernel+hypervisor+runlatch

 Derived metric group: Memory

Note: The ASO/DSO functionality also uses PMU counters for performance analysis.
When you are running the hpmstat and pmcount commands, the ASO/DSO might stop
functioning for a while.
Appendix A. Performance monitoring tools and what they are telling us 335

 [] Memory locality : 0.667
 [] Memory load traffic : 2859.047
MBytes
 [] Memory load bandwidth per processor : 2.748
MBytes/s
 [] Number of loads from local memory per loads from remote memory:
2.003
 [] Number of loads from local memory per loads from remote and distant
memory: 2.003

 Derived metric group: dL1_Reloads_percentage_per_inst

 [] % of DL1 Reloads from Remote L2 or L3 (Modified) per Inst: 0.001
%
 [] % of DL1 Reloads from Local Memory per Inst : 0.002 %
 [] % of DL1 Reloads from Remote Memory per Inst : 0.001 %
 [] % of DL1 Reloads from Distant Memory per Inst : 0.000 %

 Derived metric group: General

 [] Run cycles per run instruction : 10.670
 [] MIPS : 7.039
MIPS

 u=Unverified c=Caveat R=Redefined m=Interleaved
336 IBM Power Systems Performance Guide: Implementing and Optimizing

Appendix B. New commands and new
commands flags

In this appendix, we introduce new commands that can be useful during performance tuning
of your POWER Systems environment.

The following topics are illustrated in this appendix:

� amepat

� lsconf

B

© Copyright IBM Corp. 2013. All rights reserved. 337

amepat

The amepat tool now has the additional flag of -O. This flag enables the tool to provide a report
on different processor types. This flag is available in AIX 7.1 TL2 and above and AIX 6.1 TL8
and above.

The possible options are as follows:

� -O proc=P7 - This reports on software compression with POWER7 hardware.

� -O proc=P7+ - This reports on hardware compression with POWER7+ hardware.

� -O proc=ALL - This reports on both processor types.

Example B-1 demonstrates using the amepat command with the -O flag to provide a report on
POWER7+ hardware with the compression accelerator.

Example B-1 Using new amepat option

root@aix1:/ # amepat -O proc=P7+ 5

Command Invoked : amepat -O proc=P7+ 5

Date/Time of invocation : Tue Oct 9 07:48:28 CDT 2012
Total Monitored time : 7 mins 21 secs
Total Samples Collected : 3

System Configuration:

Partition Name : aix1
Processor Implementation Mode : POWER7 Mode
Number Of Logical CPUs : 16
Processor Entitled Capacity : 2.00
Processor Max. Capacity : 4.00
True Memory : 8.00 GB
SMT Threads : 4
Shared Processor Mode : Enabled-Uncapped
Active Memory Sharing : Disabled
Active Memory Expansion : Enabled
Target Expanded Memory Size : 8.00 GB
Target Memory Expansion factor : 1.00

System Resource Statistics: Average Min Max
--------------------------- ----------- ----------- -----------
CPU Util (Phys. Processors) 1.41 [35%] 1.38 [35%] 1.46 [36%]
Virtual Memory Size (MB) 5665 [69%] 5665 [69%] 5665 [69%]
True Memory In-Use (MB) 5881 [72%] 5881 [72%] 5881 [72%]
Pinned Memory (MB) 1105 [13%] 1105 [13%] 1106 [14%]
File Cache Size (MB) 199 [2%] 199 [2%] 199 [2%]
Available Memory (MB) 2302 [28%] 2302 [28%] 2303 [28%]

AME Statistics: Average Min Max
--------------- ----------- ----------- -----------
AME CPU Usage (Phy. Proc Units) 0.00 [0%] 0.00 [0%] 0.00 [0%]
Compressed Memory (MB) 0 [0%] 0 [0%] 0 [0%]
Compression Ratio N/A
338 IBM Power Systems Performance Guide: Implementing and Optimizing

Active Memory Expansion Modeled Statistics :

Modeled Implementation : POWER7+
Modeled Expanded Memory Size : 8.00 GB
Achievable Compression ratio :0.00

Expansion Modeled True Modeled CPU Usage
Factor Memory Size Memory Gain Estimate
--------- ------------- ------------------ -----------
 1.00 8.00 GB 0.00 KB [0%] 0.00 [0%]
 2.47 3.25 GB 4.75 GB [146%] 1.13 [28%]
 4.00 2.00 GB 6.00 GB [300%] 1.13 [28%]
 5.34 1.50 GB 6.50 GB [433%] 1.13 [28%]
 6.40 1.25 GB 6.75 GB [540%] 1.13 [28%]
 8.00 1.00 GB 7.00 GB [700%] 1.13 [28%]

Active Memory Expansion Recommendation:

The recommended AME configuration for this workload is to configure the LPAR
with a memory size of 8.00 GB and to configure a memory expansion factor
of 1.00. This will result in a memory gain of 0%. With this
configuration, the estimated CPU usage due to AME is approximately 0.00
physical processors, and the estimated overall peak CPU resource required for
the LPAR is 1.46 physical processors.

NOTE: amepat's recommendations are based on the workload's utilization level
during the monitored period. If there is a change in the workload's utilization
level or a change in workload itself, amepat should be run again.

The modeled Active Memory Expansion CPU usage reported by amepat is just an
estimate. The actual CPU usage used for Active Memory Expansion may be lower
or higher depending on the workload.
root@aix1:/ #

lsconf

The lsconf command now specifically reports if your hosting hardware has the new NX
accelerator as found on the POWER7+ processor. Example B-2 shows the output when run
on an older POWER7 machine.

Example B-2 Enhanced lsconf output

lsconf
System Model: IBM,8233-E8B
Machine Serial Number: 106011P
Processor Type: PowerPC_POWER7
Processor Implementation Mode: POWER 7
Processor Version: PV_7_Compat
Number Of Processors: 4
Processor Clock Speed: 3300 MHz
CPU Type: 64-bit
Kernel Type: 64-bit
LPAR Info: 15 750_1_AIX6
Memory Size: 8192 MB
Good Memory Size: 8192 MB
Platform Firmware level: AL730_095
Appendix B. New commands and new commands flags 339

Firmware Version: IBM,AL730_095
Console Login: enable
Auto Restart: true
Full Core: false
NX Crypto Acceleration: Not Capable

Example B-2 on page 339 provides a way to verify hardware support for the NX accelerator
without having access to the HMC.
340 IBM Power Systems Performance Guide: Implementing and Optimizing

Appendix C. Workloads

This appendix gives an overview of the workloads used throughout this book for the various
scenarios. Some workloads were created using simple tool and utilities, some developed
purposely by the team and others are based on real products.

The following topics are discussed in this appendix:

� IBM WebSphere Message Broker

� Oracle SwingBench

� Self-developed C/C++ application

� 1TB segment aliasing demo program illustration

� “latency” test for RSET, ASO and DSO demo program illustration

C

© Copyright IBM Corp. 2013. All rights reserved. 341

IBM WebSphere Message Broker

WebSphere Message Broker is an information integrator that allows interaction and data
exchange between applications regardless of the message formats or protocols that they
support.

A number of samples ship with the Message Broker product. We used one of these to
generate repeatable CPU and network load. The sample we used was the Web Service
SOAP Nodes sample. The Simple Object Access Protocol (SOAP) is a lightweight,
XLM-based protocol for exchanging information in a decentralized, distributed environment.
SOAP can be used to query and return information and involve service across the Internet.

This sample demonstrates the use of a number of SOAP nodes to provide and support a
simple Web service.

There were a few characteristics which made this sample workload appealing:

� Ease and speed of product installation and configuration
� Ability to set the duration for a workload
� Variation of message payload: 2k, 20k and 200k were available options. This allowed us to

vary workload footprint where required
� Client/server workload. We could either have both halves of the workload within an LPAR

(communicating over the loopback), or span LPARs (and CECs) where required
� Scalability. Ability to scale the workload across 1 or more threads
� TPS-style statistics, both during and a summary on completion
� Reproducible workload.

We actively used this workload to facilitate our tests in a number of areas, including ASO,
AME, WPARs and generating network sustained network traffic between our two physical
machines.

For more information on WebSphere Message Broker, please refer to the product website:

http://www-01.ibm.com/software/integration/wbimessagebroker/

Please refer to the Message Broker information center for a more detailed explanation of the
sample application:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v8r0m0/index.jsp?topic=%2Fcom.
ibm.etools.mft.samples.SOAPNodes.doc%2Fdoc%2Foverview.htm

Oracle SwingBench

Swingbench is free load generator for Oracle database 10g and 11g. Based on a Java
framework, it can work on wide variety of platforms.

Swingbench is usually used for demonstration and test. It offers several type of loads:

� OrderEntry: A typical OLTP load with some select, update, insert (60% read, 40% write).

� SalesHistory: This test is composed of complex queries against large table (100% read).

� CallingCircle: To simulate a typical online telco application.

� StressTest: Create some random inserts, updates, select against a table.

The installation of swingbench is easy. You need to install an Oracle database (10g or 11g)
and create an empty database (with the dbca command). You can after use the script,
342 IBM Power Systems Performance Guide: Implementing and Optimizing

http://www-01.ibm.com/software/integration/wbimessagebroker/
http://publib.boulder.ibm.com/infocenter/wmbhelp/v8r0m0/index.jsp?topic=%2Fcom.ibm.etools.mft.samples.SOAPNodes.doc%2Fdoc%2Foverview.htm
http://publib.boulder.ibm.com/infocenter/wmbhelp/v8r0m0/index.jsp?topic=%2Fcom.ibm.etools.mft.samples.SOAPNodes.doc%2Fdoc%2Foverview.htm
http://publib.boulder.ibm.com/infocenter/wmbhelp/v8r0m0/index.jsp?topic=%2Fcom.ibm.etools.mft.samples.SOAPNodes.doc%2Fdoc%2Foverview.htm
http://publib.boulder.ibm.com/infocenter/wmbhelp/v8r0m0/index.jsp?topic=%2Fcom.ibm.etools.mft.samples.SOAPNodes.doc%2Fdoc%2Foverview.htm

provided with swingbench to generate tables and load the data (oewizzard for OrderEntry,
shwizzard for SalesHistory and ccwizzard for CallingCircle). When everything is done, you
can start the swingbench binary (Java 6 needed for Swingbench 2.4).

For AME and LPAR placement test, we have used OrderEntry scenario with 200 concurrent
users (Figure C-1).

Figure C-1 Swinbench 2.4 graphical interface

Please refer to the following website to download or have information about the product:

http://www.dominicgiles.com/swingbench.html

Self-developed C/C++ application

In this section, we introduce the C/C++ sample applications used for the demonstration of
Power System, PowerVM, and AIX features in this book.

1TB segment aliasing demo program illustration

Example C-1 on page 344 shows the testing steps. Since LSA is good for 64 bit applications
with large memory footprint and low spatial locality, the sample is intentionally designed in
such a way. We can see 30% performance gain on average when LSA is enabled in this test.
Appendix C. Workloads 343

http://www.dominicgiles.com/swingbench.html

Example C-1 sample test procedures

./lsatest
usage: ./lsatest <length_in_MB> <step_in_Bytes> <iteration>

Specify a large memory footprint, and specify a large step size, then the spatial
locality will not be good. As below, we specify 16384MB memory footprint, and
20,000,000 Byte step size.

Scenario I, LSA disabled:
#vmo -o esid_allocator=0
#./lsatest 16384 20000000 0

Scenario II, LSA enabled:
#vmo -o esid_allocator=1
#./lsatest 16384 20000000 0

Example C-2 shows the sample program. The sample program creates a piece of shared
memory with specified size, and then traverses the shared memory using the step size
specified. It calculates the average latency of memory access at the end of each round of
load test.

Example C-2 lsatest sample program

#cat lsatest.cpp
/*
 * The following [enclosed] code is sample code created by IBM
 * Corporation. This sample code is not part of any standard IBM product
 * and is provided to you solely for the purpose of demonstration.
 * The code is provided 'AS IS',
 * without warranty of any kind. IBM shall not be liable for any damages
 * arising out of your use of the sample code, even if they have been
 * advised of the possibility of such damages.
 */
/*
Problem report: chenchih@cn.ibm.com
To compile(64bit is a must): xlC -q64 lsatest.cpp -o lsatest
*/

#include <time.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/time.h>
#include <unistd.h>
#include <sys/shm.h>

#define REPEATTIMES 8
#define ITERATIONS 1048576
#define DEBUG printf

long delta(timeval * start, timeval* end)
{
 long dlt;
 dlt = (end->tv_sec - start->tv_sec)*1000000 + (end->tv_usec - start->tv_usec);
 return dlt;
}

344 IBM Power Systems Performance Guide: Implementing and Optimizing

int loadtest(char *addr, long length, long step)
{
 void **p = 0;
 timeval start, end;
 long totaltime, besttime;
 double latency;
 long i,j;

 if(step % sizeof(void*) != 0)
 {
 DEBUG("The step should be aligned on pointer boudry\n");
 return -1;
 }

 for (i = length; i >= step; i -= step)
 {
 p = (void **)&addr[i];
 *p = &addr[i - step];
 }

 p = (void **)&addr[i];
 *p = &addr[length]; /*rewind*/
 besttime = ~0UL >> 1;

 for (i = 0; i < REPEATTIMES; i++) {
#define ONE p = (void **)*p;
#define FOUR ONE ONE ONE ONE
#define SIXTEEN FOUR FOUR FOUR FOUR
#define SIXTYFOUR SIXTEEN SIXTEEN SIXTEEN SIXTEEN
#define QUARTER_ONE_KI SIXTYFOUR SIXTYFOUR SIXTYFOUR SIXTYFOUR
#define ONE_KI QUARTER_ONE_KI QUARTER_ONE_KI QUARTER_ONE_KI QUARTER_ONE_KI

 j = ITERATIONS;
 gettimeofday(&start, NULL);
 while (j > 0)
 {
 ONE_KI
 j -= 1024;
 }
 gettimeofday(&end, NULL);

 totaltime = delta(&start, &end);
 if(totaltime < besttime)
 besttime = totaltime;
 }

 besttime*=1000;
 latency = (double)besttime/(double)ITERATIONS;
 printf("latency is %.5lf ns\n", latency);
 return 0;
}

int main(int argc, char* argv[])
Appendix C. Workloads 345

{
 void *addr, *startaddr;
 int fd, myid;
 key_t key;
 int iteration, endless = 0;
 long len, step;
 char estr[256];

 if(argc < 4)
 {
 printf("usage: %s <length_in_MB> <step_in_Bytes> <iteration>\n", argv[0]);
 return -1;
 }

 len = atol(argv[1]);
 len = len * 1024 * 1024;
 step = atol(argv[2]);
 iteration = atoi(argv[3]);

 if(iteration == 0)
 endless = 1;

 fd = open("/tmp/mytest", O_CREAT|O_RDWR);
 close(fd);
 key = ftok("/tmp/mytest", 0x57);
 if(key != -1)
 printf("key = %x\n", key);
 else
 {
 perror("ftok");
 return -1;
 }
 myid = shmget(key, len, IPC_CREAT|0644);
 startaddr = (void*)0x0700000000000000ll;
 addr = shmat(myid, startaddr, 0);
 printf("Allocated %ld bytes at location 0x%p\n", len, addr);

 if (addr == NULL)
 {
 sprintf(estr,"shmat Failed for size %i\n",len);
 perror(estr);
 return 1;
 }
 while(endless || (iteration > 0))
 {
 loadtest((char*)addr, len - 1024, step);
 iteration--;
 }
}

Note: This sample creates a shared memory region for test. The shared memory key
starts with “0x57”. You can use ipcs -mab to display the shared memory region, and ipcrm
to delete it after you are done with the test.
346 IBM Power Systems Performance Guide: Implementing and Optimizing

“latency” test for RSET, ASO and DSO demo program illustration

As one of the major benefits we can get from RSET and ASO is cache affinity and memory
affinity, we create a sample in such a way.

Example C-3 gives the sample code we used for the RSET and ASO demonstration. It is a
memory intensive application, which creates a piece of heap memory with size specified, and
multiple threads traverse the same heap memory in the step size specified.

In Example C-3, when one thread complete one round of the memory load test, we consider it
as one transaction finished. In each round of the memory load test, there is 16777216 times
of memory loads, as in the sample code (REPEATTIMES*ITERATIONS). After the time
specified, the program exits and logs the overall throughput in “transaction.log”. The program
also logs the average memory load latency during the memory load tests.

Example C-3 Memory latency test sample code

/*
 * The following [enclosed] code is sample code created by IBM
 * Corporation. This sample code is not part of any standard IBM product
 * and is provided to you solely for the purpose of demonstration.
 * The code is provided 'AS IS',
 * without warranty of any kind. IBM shall not be liable for any damages
 * arising out of your use of the sample code, even if they have been
 * advised of the possibility of such damages.
 */
/*
Problem report: chenchih@cn.ibm.com
To compile(64bit is a must): xlC_r -q64 latency.cpp -o latency
*/
#include <pthread.h>
#include <time.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/time.h>
#include <unistd.h>
#include <sys/shm.h>
#include <stdio.h>
#include <string.h>

#define REPEATTIMES 1
#define ITERATIONS 16777216
#define DEBUG printf
#define MAX_NUMBER_OF_THREADS 256

long long g_threadcounter[MAX_NUMBER_OF_THREADS];

long delta(timeval * start, timeval* end)
{
 long dlt;
 dlt = (end->tv_sec - start->tv_sec)*1000000 + (end->tv_usec - start->tv_usec);
 return dlt;
}

int initialize(char* addr, long length, long step)
{

Appendix C. Workloads 347

 void **p = 0;
 long i,j;

 if(step % sizeof(void*) != 0)
 {
 DEBUG("step should be aligned on pointer boudry\n");
 return -1;
 }

 for (i = length; i >= step; i -= step)
 {
 p = (void **)&addr[i];
 *p = &addr[i - step];
 }

 p = (void **)&addr[i];
 *p = &addr[length]; /*rewind*/
 return 0;
}

double loadtest(char *addr, long length, long step)
{
 void **p = 0;
 timeval start, end;
 long long totaltime, besttime;
 double latency;
 long i,j;
 p =(void**) &addr[length]; //start point.
 besttime = ~0UL >> 1;

 for (i = 0; i < REPEATTIMES; i++)
 {
#define ONE p = (void **)*p;
#define FOUR ONE ONE ONE ONE
#define SIXTEEN FOUR FOUR FOUR FOUR
#define SIXTYFOUR SIXTEEN SIXTEEN SIXTEEN SIXTEEN
#define QUARTER_ONE_KI SIXTYFOUR SIXTYFOUR SIXTYFOUR SIXTYFOUR
#define ONE_KI QUARTER_ONE_KI QUARTER_ONE_KI QUARTER_ONE_KI QUARTER_ONE_KI

 j = ITERATIONS;
 gettimeofday(&start, NULL);
 while (j > 0)
 {
 ONE_KI
 j -= 1024;
 }
 gettimeofday(&end, NULL);

 totaltime = delta(&start, &end);
 if(totaltime < besttime)
 besttime = totaltime;
 }

 besttime*=1000;
348 IBM Power Systems Performance Guide: Implementing and Optimizing

 latency = (double)besttime/(double)ITERATIONS;
 return latency;
}

struct threadarg
{
 void *ptr;
 long len;
 long step;
 long thid;
};

extern "C" void* testfunc(void* arg)
{
 char *addr;
 long len, step, thid;
 double latency;
 struct threadarg *tharg;
 tharg = (struct threadarg *)arg;

 addr = (char*) tharg->ptr;
 len = tharg->len;
 step = tharg->step;
 thid = tharg->thid;

 while(1)
 {
 latency = loadtest(addr, len - 1024, step);
 if(g_threadcounter[thid] % 8 == 0)
 printf("in thread %d, latency is %.5lf ns\n", thread_self(), latency);
 g_threadcounter[thid]++;
 }
 return NULL;
}

int main(int argc, char* argv[])
{
 void *addr, *startaddr;
 int threadnum = 0;
 int duration;
 long len, step, total;
 pthread_t tid = 0, *tlist;
 pthread_attr_t attr;
 char estr[256];
 struct threadarg *parg;
 char* ptr;
 timeval current, end, start;
 int ret;

 if(argc < 5)
 {
 printf("usage: %s <length_in_MB> <step_in_Bytes> <thread number>
<duration_in_seconds>\n", argv[0]);
 return -1;
Appendix C. Workloads 349

 }

 memset(g_threadcounter, 0, sizeof(g_threadcounter));

 len = atol(argv[1]);
 len = len * 1024 * 1024;
 step = atol(argv[2]);
 threadnum = atoi(argv[3]);
 duration = atoi(argv[4]);

 total = len;
 addr = malloc(total);
 if (addr == NULL)
 {
 sprintf(estr,"malloc failed for size %i\n",len);
 perror(estr);
 return 1;
 }
 ptr = (char*)addr;

 initialize(ptr, total - 1024, step);

 tlist = new pthread_t[threadnum];
 pthread_attr_init(&attr);

 for(int i =0; i < threadnum; i++)
 {
 parg = new threadarg;
 parg->ptr = addr;
 parg->len = total;
 parg->step = step;
 parg->thid = i;
 ret = pthread_create(&tid, &attr, testfunc, parg);
 if(ret != 0)
 {
 printf("pthread_create error, err=%d\n", ret);
 return -1;
 }
 tlist[i] = tid;
 }

 gettimeofday(¤t, NULL);

 end.tv_sec = current.tv_sec + duration;
 end.tv_usec = current.tv_usec;

 long long mycounter = 0, savedcounter = 0, savedsec;
 int fd;
 char outdata[1024];
 fd = open("transaction.log", O_RDWR|O_CREAT|O_APPEND);
 savedsec = current.tv_sec;

 while(1)
 {
350 IBM Power Systems Performance Guide: Implementing and Optimizing

 sleep(60);

 mycounter=0;
 gettimeofday(¤t, NULL);
 for(int i = 0; i < threadnum; i++)
 mycounter+=g_threadcounter[i];

 if(current.tv_sec >= end.tv_sec)
 {
 sprintf(outdata, "The total throughput is %lld. \n", mycounter);
 write(fd, outdata, strlen(outdata));
 break;
 }
 else
 {
 sprintf(outdata, "The current TPS is %.2lf\n", (double)(mycounter -
savedcounter)/(double)(current.tv_sec - savedsec));
 write(fd, outdata, strlen(outdata));
 savedcounter = mycounter;
 savedsec = current.tv_sec;
 }
 }

 close(fd);
 /*for(int i=0; i < threadnum; i++) {
 void* result;
 pthread_join(tlist[i], &result);
 }*/

 return 0;
}

The test steps are as shown in Example C-4. We start two latency instances in different
directories, each allocates 16384MB heap memory, and creates 30 threads to traverse the
heap memory with step size equal to 1024 bytes, and runs for 7200 seconds. To simplify, we
put all the parameters in a script named proc1 and proc2.

Example C-4 Memory latency test steps

./latency
usage: ./latency <length_in_MB> <step_in_Bytes> <thread number> <duration_in_seconds>
#cat proc1
./latency 16384 1024 30 7200
#cat proc2
./latency 16384 1024 30 7200
Appendix C. Workloads 351

352 IBM Power Systems Performance Guide: Implementing and Optimizing

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� IBM PowerVM Getting Started Guide, REDP-4815-00

� Virtualization and Clustering Best Practices Using IBM System p Servers, SG24-7349

� IBM PowerVM Virtualization Active Memory Sharing, REDP-4470

� IBM PowerVM Virtualization Introduction and Configuration, SG24-7940-04

� IBM PowerVM Virtualization Managing and Monitoring, SG24-7590-03

� IBM PowerVM Best Practises, SG24-8062

� Exploiting IBM AIX Workload Partitions, SG24-7955

� IBM PowerVM Introduction and Configuration, SG24-7940

� POWER7 and POWER7+ Optimization and Tuning Guide, SG24-8079

� AIX 7.1 Difference Guide, SG24-7910

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� IBM Power Systems

http://www.ibm.com/systems/power/advantages/index_midsize.html

� IBM hardware information center

http://http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2013. All rights reserved. 353

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/systems/power/advantages/index_midsize.html
http://http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

354 IBM Power Systems Performance Guide: Implementing and Optimizing

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 Pow

er System
s Perform

ance Guide: Im
plem

enting and Optim
izing

IBM
 Pow

er System
s Perform

ance
Guide: Im

plem
enting and Optim

izing

IBM
 Pow

er System
s Perform

ance
Guide: Im

plem
enting and

Optim
izing

IBM
 Pow

er System
s Perform

ance Guide: Im
plem

enting and Optim
izing

IBM
 Pow

er System
s Perform

ance
Guide: Im

plem
enting and

Optim
izing

IBM
 Pow

er System
s Perform

ance
Guide: Im

plem
enting and

Optim
izing

®

SG24-8080-00 ISBN 0738437662

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM Power Systems
Performance Guide
Implementing and Optimizing

Leverages IBM Power
virtualization

Helps maximize
system resources

Provides sample
scenarios

This IBM Redbooks publication addresses performance tuning topics to
help leverage the virtualization strengths of the POWER platform to
solve clients’ system resource utilization challenges, and maximize
system throughput and capacity. We examine the performance
monitoring tools, utilities, documentation, and other resources
available to help technical teams provide optimized business solutions
and support for applications running on IBM POWER systems’
virtualized environments.

The book offers application performance examples deployed on IBM
Power Systems utilizing performance monitoring tools to leverage the
comprehensive set of POWER virtualization features: Logical Partitions
(LPARs), micro-partitioning, active memory sharing, workload
partitions, and more. We provide a well-defined and documented
performance tuning model in a POWER system virtualized environment
to help you plan a foundation for scaling, capacity, and optimization.

This book targets technical professionals (technical consultants,
technical support staff, IT Architects, and IT Specialists) responsible for
providing solutions and support on IBM POWER systems, including
performance tuning.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. IBM Power Systems and performance tuning
	1.1 Introduction
	1.2 IBM Power Systems
	1.3 Overview of this publication
	1.4 Regarding performance

	Chapter 2. Hardware implementation and LPAR planning
	2.1 Hardware migration considerations
	2.2 Performance consequences for processor and memory placement
	2.2.1 Power Systems and NUMA effect
	2.2.2 PowerVM logical partitioning and NUMA
	2.2.3 Verifying processor memory placement
	2.2.4 Optimizing the LPAR resource placement
	2.2.5 Conclusion of processor and memory placement

	2.3 Performance consequences for I/O mapping and adapter placement
	2.3.1 POWER 740 8205-E6B logical data flow
	2.3.2 POWER 740 8205-E6C logical data flow
	2.3.3 Differences between the 8205-E6B and 8205-E6C
	2.3.4 POWER 770 9117-MMC logical data flow
	2.3.5 POWER 770 9117-MMD logical data flow
	2.3.6 Expansion units
	2.3.7 Conclusions

	2.4 Continuous availability with CHARM
	2.4.1 Hot add or upgrade
	2.4.2 Hot repair
	2.4.3 Prepare for Hot Repair or Upgrade utility
	2.4.4 System hardware configurations

	2.5 Power management

	Chapter 3. IBM Power Systems virtualization
	3.1 Optimal logical partition (LPAR) sizing
	3.2 Active Memory Expansion
	3.2.1 POWER7+ compression accelerator
	3.2.2 Sizing with the active memory expansion planning tool
	3.2.3 Suitable workloads
	3.2.4 Deployment
	3.2.5 Tunables
	3.2.6 Monitoring
	3.2.7 Oracle batch scenario
	3.2.8 Oracle OLTP scenario
	3.2.9 Using amepat to suggest the correct LPAR size
	3.2.10 Expectations of AME

	3.3 Active Memory Sharing (AMS)
	3.4 Active Memory Deduplication (AMD)
	3.5 Virtual I/O Server (VIOS) sizing
	3.5.1 VIOS processor assignment
	3.5.2 VIOS memory assignment
	3.5.3 Number of VIOS
	3.5.4 VIOS updates and drivers

	3.6 Using Virtual SCSI, Shared Storage Pools and N-Port Virtualization
	3.6.1 Virtual SCSI
	3.6.2 Shared storage pools
	3.6.3 N_Port Virtualization
	3.6.4 Conclusion

	3.7 Optimal Shared Ethernet Adapter configuration
	3.7.1 SEA failover scenario
	3.7.2 SEA load sharing scenario
	3.7.3 NIB with an SEA scenario
	3.7.4 NIB with SEA, VLANs and multiple V-switches
	3.7.5 Etherchannel configuration for NIB
	3.7.6 VIO IP address assignment
	3.7.7 Adapter choices
	3.7.8 SEA conclusion
	3.7.9 Measuring latency
	3.7.10 Tuning the hypervisor LAN
	3.7.11 Dealing with dropped packets on the hypervisor network
	3.7.12 Tunables

	3.8 PowerVM virtualization stack configuration with 10 Gbit
	3.9 AIX Workload Partition implications, performance and suggestions
	3.9.1 Consolidation scenario
	3.9.2 WPAR storage

	3.10 LPAR suspend and resume best practices

	Chapter 4. Optimization of an IBM AIX operating system
	4.1 Processor folding, Active System Optimizer, and simultaneous multithreading
	4.1.1 Active System Optimizer
	4.1.2 Simultaneous multithreading (SMT)
	4.1.3 Processor folding
	4.1.4 Scaled throughput

	4.2 Memory
	4.2.1 AIX vmo settings
	4.2.2 Paging space
	4.2.3 One TB segment aliasing
	4.2.4 Multiple page size support

	4.3 I/O device tuning
	4.3.1 I/O chain overview
	4.3.2 Disk device tuning
	4.3.3 Pbuf on AIX disk devices
	4.3.4 Multipathing drivers
	4.3.5 Adapter tuning

	4.4 AIX LVM and file systems
	4.4.1 Data layout
	4.4.2 LVM best practice
	4.4.3 File system best practice
	4.4.4 The filemon utility
	4.4.5 Scenario with SAP and DB2

	4.5 Network
	4.5.1 Network tuning on 10 G-E
	4.5.2 Interrupt coalescing
	4.5.3 10-G adapter throughput scenario
	4.5.4 Link aggregation
	4.5.5 Network latency scenario
	4.5.6 DNS and IPv4 settings
	4.5.7 Performance impact due to DNS lookups
	4.5.8 TCP retransmissions
	4.5.9 tcp_fastlo
	4.5.10 MTU size, jumbo frames, and performance

	Chapter 5. Testing the environment
	5.1 Understand your environment
	5.1.1 Operating system consistency
	5.1.2 Operating system tunable consistency
	5.1.3 Size that matters
	5.1.4 Application requirements
	5.1.5 Different workloads require different analysis
	5.1.6 Tests are valuable

	5.2 Testing the environment
	5.2.1 Planning the tests
	5.2.2 The testing cycle
	5.2.3 Start and end of tests

	5.3 Testing components
	5.3.1 Testing the processor
	5.3.2 Testing the memory
	5.3.3 Testing disk storage
	5.3.4 Testing the network

	5.4 Understanding processor utilization
	5.4.1 Processor utilization
	5.4.2 POWER7 processor utilization reporting
	5.4.3 Small workload example
	5.4.4 Heavy workload example
	5.4.5 Processor utilization reporting in power saving modes
	5.4.6 A common pitfall of shared LPAR processor utilization

	5.5 Memory utilization
	5.5.1 How much memory is free (dedicated memory partitions)
	5.5.2 Active memory sharing partition monitoring
	5.5.3 Active memory expansion partition monitoring
	5.5.4 Paging space utilization
	5.5.5 Memory size simulation with rmss
	5.5.6 Memory leaks

	5.6 Disk storage bottleneck identification
	5.6.1 Performance metrics
	5.6.2 Additional workload and performance implications
	5.6.3 Operating system - AIX
	5.6.4 Virtual I/O Server
	5.6.5 SAN switch
	5.6.6 External storage

	5.7 Network utilization
	5.7.1 Network statistics
	5.7.2 Network buffers
	5.7.3 Virtual I/O Server networking monitoring
	5.7.4 AIX client network monitoring

	5.8 Performance analysis at the CEC
	5.9 VIOS performance advisor tool and the part command
	5.9.1 Running the VIOS performance advisor in monitoring mode
	5.9.2 Running the VIOS performance advisor in post processing mode
	5.9.3 Viewing the report

	5.10 Workload management

	Chapter 6. Application optimization
	6.1 Optimizing applications with AIX features
	6.1.1 Improving application memory affinity with AIX RSETs
	6.1.2 IBM AIX Dynamic System Optimizer

	6.2 Application side tuning
	6.2.1 C/C++ applications
	6.2.2 Java applications
	6.2.3 Java Performance Advisor

	6.3 IBM Java Support Assistant
	6.3.1 IBM Monitoring and Diagnostic Tools for Java - Memory Analyzer
	6.3.2 Other useful performance advisors and analyzers

	Appendix A. Performance monitoring tools and what they are telling us
	NMON
	lpar2rrd
	Trace tools and PerfPMR
	AIX system trace basics
	Using the truss command
	Real case studies using tracing facilities
	PerfPMR
	The hpmstat and hpmcount utilities

	Appendix B. New commands and new commands flags
	amepat
	lsconf

	Appendix C. Workloads
	IBM WebSphere Message Broker
	Oracle SwingBench
	Self-developed C/C++ application
	1TB segment aliasing demo program illustration
	“latency” test for RSET, ASO and DSO demo program illustration

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

